93 research outputs found
In situ and low-cost monitoring of particles falling from freshwater animals: from microplastics to parasites
A simple and low-cost method of monitoring and collecting particulate matter detaching from (or interacting with) aquatic animals is described using a novel device based on an airlift pump principle applied to floating cages. The efficiency of the technique in particle collection is demonstrated using polyethylene microspheres interacting with a cyprinid fish (Carassius carassius) and a temporarily parasitic stage (glochidia) of an endangered freshwater mussel (Margaritifera margaritifera) dropping from experimentally infested host fish (Salmo trutta). The technique enables the monitoring of temporal dynamics of particle detachment and their continuous collection both in the laboratory and in situ, allowing the experimental animals to be kept under natural water quality regimes and reducing the need for handling and transport. The technique can improve the representativeness of current experimental methods used in the fields of environmental parasitology, animal feeding ecology and microplastic pathway studies in aquatic environments. In particular, it makes it accessible to study the physiological compatibility of glochidia and their hosts, which is an essential but understudied autecological feature in mussel conservation programs worldwide. Field placement of the technique can also aid in outreach programs with pay-offs in the increase of scientific literacy of citizens concerning neglected issues such as the importance of fish hosts for the conservation of freshwater mussels.We thank ZbynÄk JanÄi and Bohumil Dort for the help in the field, the nature conservation authorities for providing permits and access to the research area in BorovĂĄ Lada and two anonymous reviewers for their helpful comments on an earlier draft. All experiments were in compliance with the current laws of the Czech Republic Act No. 246/1992 coll. on the protection of animals against cruelty
Effects of warm-up on vertical jump performance and muscle electrical activity using half-squats at low and moderate intensity
The purpose of this study was to determine the effects of a specific warm-up using half-squats at low and moderate intensity on vertical jump performance and electromyographic activity of the thigh muscles. The subjects were 26 men who were divided into a low intensity group (LIG; n = 13) and a moderate intensity group (MIG; n = 13). The LIG performed a specific warm-up protocol that included the explosive execution of half-squats with loads 25 and 35% of the one repetition maximum (1RM) and the MIG with loads 45 and 65% of the 1RM. The two groups performed a countermovement jump (CMJ) before and three minutes after the specific warm-up protocols. During the concentric phase of the CMJ a linear encoder connected to an A/D converter interfaced to a PC with a software for data acquisition and analysis allowed the calculation of average mechanical power. The electromyographic (EMG) activity of the vastus lateralis (VL), vastus medialis (VM) and rectus femoris (RF) were recorded during the concentric phase of the jumps. The average quadriceps (Qc) activity (mean value of the VL, VM and RF) was also calculated. A two way ANOVA (proto-cols X time) with repeated measures on the second factor was used to analyze the data. Following the specific warm-up procedure both groups improved (p †0.05) CMJ performance and mechanical power by 3.5% and 6.3%, respectively, with no differences observed between the two groups. EMG activity of the Qc and VL increased (p †0.05) for both groups by 5.9% and 8.5%, respectively. It is concluded that the use of a specific warm-up that includes half-squats, performed explosively with low to moderate intensity, improves CMJ performance. This may be due to increased muscle activation as evaluated by the surface EMG. {\textcopyright} Journal of Sports Science and Medicine
Genes of intestinal Escherichia coli and their relation to the inflammatory activity in patients with ulcerative colitis and Crohnâs disease
Escherichia coli gene fimA was the most frequent gene that occurred in the intestine of all investigated groups. All subjects with fimA gene had significantly higher values of tumor necrosis factor alpha (TNF-α) and CRP than those with other E. coli genes. There was also a tendency to increased serum interleukin (IL)-6 levels in patients carrying the fimA gene; however, no relation was observed to serum IL-8 and IL-10. Patients with Crohnâs disease had significantly higher IL-6 than those with ulcerative colitis (UC) and controls. The highest levels of TNF-α were detected in the UC group. There were no significant differences in serum IL-8 and IL-10 between all three groups. The presence of E. coli gene fimA in the large bowel of patients with IBD is related to the immunological activity of the disease which may be important from the aspect of therapeutical strategy
Biometric conversion factors as a unifying platform for comparative assessment of invasive freshwater bivalves
Invasive bivalves continue to spread and negatively impact freshwater ecosystems worldwide. As different metrics for body size and biomass are frequently used within the literature to standardise bivalve-related ecological impacts (e.g. respiration and filtration rates), the lack of broadly applicable conversion equations currently hinders reliable comparison across bivalve populations. To facilitate improved comparative assessment among studies originating from disparate geographical locations, we report body size and biomass conversion equations for six invasive freshwater bivalves (or species complex members) worldwide: Corbicula fluminea, C. largillierti, Dreissena bugensis, D. polymorpha, Limnoperna fortunei and Sinanodonta woodiana, and tested the reliability (i.e. precision and accuracy) of these equations. Body size (length, width and height) and biomass metrics of living-weight (LW), wet-weight (WW), dry-weight (DW), dry shell-weight (SW), shell free dry-weight (SFDW) and ash-free dry-weight (AFDW) were collected from a total of 44 bivalve populations located in Asia, the Americas and Europe. Relationships between body size and individual biomass metrics, as well as proportional weight-to-weight conversion factors, were determined. For most species, although inherent variation existed between sampled populations, body size directional measurements were found to be good predictors of all biomass metrics (e.g. length to LW, WW, SW or DW: R2 = 0.82â0.96), with moderate to high accuracy for mean absolute error (MAE): ±9.14%â24.19%. Similarly, narrow 95% confidence limits and low MAE were observed for most proportional biomass relationships, indicating high reliability for the calculated conversion factors (e.g. LW to AFDW; CI range: 0.7â2.0, MAE: ±0.7%â2.0%). Synthesis and applications. Our derived biomass prediction equations can be used to rapidly estimate the biologically active biomass of the assessed species, based on simpler biomass or body size measurements for a wide range of situations globally. This allows for the calculation of approximate average indicators that, when combined with density data, can be used to estimate biomass per geographical unit-area and contribute to quantification of population-level effects. These general equations will support meta-analyses, and allow for comparative assessment of historic and contemporary data. Overall, these equations will enable conservation managers to better understand and predict ecological impacts of these bivalves. © 2021 The Authors. Journal of Applied Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Societ
The role of anthropogenic habitats in freshwater mussel conservation
Anthropogenic freshwater habitats may provide undervalued prospects for long-term conservation as part of species conservation planning. This fundamental, but overlooked, issue requires attention considering the pace that humans have been altering natural freshwater ecosystems and the accelerated levels of biodiversity decline in recent decades. We compiled 709 records of freshwater mussels (Bivalvia, Unionida) inhabiting a broad variety of anthropogenic habitat types (from small ponds to large reservoirs and canals) and reviewed their importance as refuges for this faunal group. Most records came from Europe and North America, with a clear dominance of canals and reservoirs. The dataset covered 228 species, including 34 threatened species on the IUCN Red List. We discuss the conservation importance and provide guidance on how these anthropogenic habitats could be managed to provide optimal conservation value to freshwater mussels. This review also shows that some of these habitats may function as ecological traps owing to conflicting management practices or because they act as a sink for some populations. Therefore, anthropogenic habitats should not be seen as a panacea to resolve conservation problems. More information is necessary to better understand the trade-offs between human use and the conservation of freshwater mussels (and other biota) within anthropogenic habitats, given the low number of quantitative studies and the strong biogeographic knowledge bias that persists.This publication is based upon work from COST Action CA18239,
supported by COST (European Cooperation in Science and
Technology). A.M.L. was financed by the Institute of Environmental
Sciences Jagiellonian University (N18/DBS/000003) and K.N.
by the AragĂłn Government. The authors acknowledge JarosĆaw
Andrzejewski, Bartosz Czader, Anna Fica, Marcin Horbacz,
Tomasz Jonderko, Steinar KÄlÄs, Tomasz Kapela, BjÞrn Mejdell
Larsen, Maciej Pabijan, Katarzyna Pawlik, Ilona PopĆawska, Joanna
Przybylska, Tomasz PrzybyĆ, Mateusz Rybak, Kjell Sandaas, JarosĆaw
SĆowikowski, Tomasz Szczasny, MichaĆ Zawadzki and PaweĆ Zowada
for providing detailed information on specific examples concerning
freshwater mussels in anthropogenic habitats. We thank the editor
and two anonymous referees for the valuable suggestions made,
which increased the clarity of our manuscript.info:eu-repo/semantics/publishedVersio
Integrative phylogenetic, phylogeographic and morphological characterisation of the Unio crassus species complex reveals cryptic diversity with important conservation implications
The global decline of freshwater mussels and their crucial ecological services highlight the need to understand their phylogeny, phylogeography and patterns of genetic diversity to guide conservation efforts. Such knowledge is urgently needed for Unio crassus, a highly imperilled species originally widespread throughout Europe and southwest Asia. Recent studies have resurrected several species from synonymy based on mitochondrial data, revealing U. crassus to be a complex of cryptic species. To address long-standing taxonomic uncertainties hindering effective conservation, we integrate morphometric, phylogenetic, and phylogeographic analyses to examine species diversity within the U. crassus complex across its entire range. Phylogenetic analyses were performed using cytochrome c oxidase subunit I (815 specimens from 182 populations) and, for selected specimens, whole mitogenome sequences and Anchored Hybrid Enrichment (AHE) data on ⌠600 nuclear loci. Mito-nuclear discordance was detected, consistent with mitochondrial DNA gene flow between some species during the Pliocene and Pleistocene. Fossil-calibrated phylogenies based on AHE data support a Mediterranean origin for the U. crassus complex in the Early Miocene. The results of our integrative approach support 12 species in the group: the previously recognised Unio bruguierianus, Unio carneus, Unio crassus, Unio damascensis, Unio ionicus, Unio sesirmensis, and Unio tumidiformis, and the reinstatement of five nominal taxa: Unio desectus stat. rev., Unio gontierii stat. rev., Unio mardinensis stat. rev., Unio nanus stat. rev., and Unio vicarius stat. rev. Morphometric analyses of shell contours reveal important morphospace overlaps among these species, highlighting cryptic, but geographically structured, diversity. The distribution, taxonomy, phylogeography, and conservation of each species are succinctly described.We thank Ana-Maria Benedek, Monica SĂźrbu and Jouni Leinikki for
their assistance with the fieldwork, and to Jeroen Goud, Sankurie Pye,
Fiona Ware, Emily Mitchell, and Aleksandra Skawina for their assistance
with the taxonomic investigation. We would also like to thank the editor,
Dr. Guillermo OrtĂ, and two anonymous reviewers for their time and
effort in reviewing our manuscript and for their insightful comments and
valuable improvements to our work. This publication is based upon
work from COST Action CA18239: CONFREMU - Conservation of
freshwater mussels: a pan-European approach, supported by COST
(European Cooperation in Science and Technology), including STSMs,
the interaction of the authors and the writing of the paper. This work
was supported by the project ConBiomics: The Missing Approach for the Conservation of Freshwater Bivalves Project No. POCI-01-0145-FEDER-030286, co-financed by FEDER through POCI and by FCT - FundaçËao
para a CiËencia e a Tecnologia, through national funds. Strategic funding
UIDB/04423/2020 and UIDP/04423/2020 was provided by FCT. FCT
also supported DVG (2020.03848.CEECIND), EF (CEECINST/00027/
2021/CP2789/CT0003) and MLL (2020.03608.CEECIND). INB, AVK
and IVV were supported by the Russian Science Foundation under grants
(19-14-00066-P), (21-17-00126) and (21-74-10130) respectively. BVB
acknowledges the bioinformatics platform of UMR 8198 for the
computing resources to perform time-calibrated phylogenetic analyses;
this platform is in part funded by CPER research project CLIMIBIO
through the French Minist`ere de lâEnseignement SupÂŽerieur et de la
Recherche, the Agence Nationale de la Recherche, the European Fund
for Regional Development (FEDER) and the region Hauts-de-France
(HdF). Support to KD came from the Czech Science Foundation
(19â05510S). TT and MT were supported by the National Science Fund
of Bulgaria under the project âConservation of freshwater mussels on the
Balkan Peninsulaâ (KP-06-COST-9/20.07.2022). Any use of trade, firm,
or product names is for descriptive purposes only and does not imply
endorsement by the United States Government.info:eu-repo/semantics/publishedVersio
Conservation of freshwater bivalves at the global scale: diversity, threats and research needs
Bivalves are ubiquitous members of freshwater ecosystems and responsible for important functions and services. The present paper revises freshwater bivalve diversity, conservation status and threats at the global scale and discusses future research needs and management actions. The diversity patterns are uneven across the globe with hotspots in the interior basin in the United States of America (USA), Central America, Indian subcontinent and Southeast Asia. Freshwater bivalves are affected by multiple threats that vary across the globe; however, pollution and natural system (habitat) modifications being consistently found as the most impacting. Freshwater bivalves are among the most threatened groups in the world with 40% of the species being near threatened, threatened or extinct, and among them the order Unionida is the most endangered. We suggest that global cooperation between scientists, managers, politicians and general public, and application of new technologies (new generation sequencing and remote sensing, among others) will strengthen the quality of studies on the natural history and conservation of freshwater bivalves. Finally, we introduce the articles published in this special issue of Hydrobiologia under the scope of the Second International Meeting on Biology and Conservation of Freshwater Bivalves held in 2015 in Buffalo, New York, USA.This work was supported by FCTâFoundation for Science and
Technology, Project 3599âPromote the Scientific Production
and Technological Development and Thematic 3599-PPCDT by
FEDER as part of the project FRESHCO: multiple implications
of invasive species on Freshwater Mussel co-extinction
processes (Contract: PTDC/AGRFOR/1627/2014). FCT also
supported MLL under Grant (SFRH/BD/115728/2016)
Carboxypeptidase-M is regulated by lipids and CSFs in macrophages and dendritic cells and expressed selectively in tissue granulomas and foam cells
Granulomatous inflammations, characterized by the presence of activated macrophages (MAs) forming epithelioid cell (EPC) clusters, are usually easy to recognize. However, in ambiguous cases the use of a MA marker that expresses selectively in EPCs may be needed. Here, we report that carboxypeptidase-M (CPM), a MA-differentiation marker, is preferentially induced in EPCs of all granuloma types studied, but not in resting MAs. As CPM is not expressed constitutively in MAs, this allows utilization of CPM-immunohistochemistry in diagnostics of minute granuloma detection when dense non-granulomatous MAs are also present. Despite this rule, hardly any detectable CPM was found in advanced/active tubercle caseous disease, albeit in early tuberculosis granuloma, MAs still expressed CPM. Indeed, in vitro both the CPM-protein and -mRNA became downregulated when MAs were infected with live mycobacteria. In vitro, MA-CPM transcript is neither induced remarkably by interferon-Îł, known to cause classical MA activation, nor by IL-4, an alternative MA activator. Instead, CPM is selectively expressed in lipid-laden MAs, including the foam cells of atherosclerotic plaques, xanthomatous lesions and lipid pneumonias. By using serum, rich in lipids, and low-density lipoprotein (LDL) or VLDL, CPM upregulation could be reproduced in vitro in monocyte-derived MAs both at transcriptional and protein levels, and the increase is repressed under lipid-depleted conditions. The microarray analyses support the notion that CPM induction correlates with a robust progressive increase in CPM gene expression during monocyte to MA maturation and dendritic cell (DC) differentiation mediated by granulocyteâMA-colony-stimulating factor+IL-4. M-CSF alone also induced CPM. These results collectively indicate that CPM upregulation in MAs is preferentially associated with increased lipid uptake, and exposure to CSF, features of EPCs, also. Therefore, CPM-immunohistochemistry is useful for granuloma and foam MA detections in tissue sections. Furthermore, the present data offer CPM for the first time to be a novel marker and cellular player in lipid uptake and/or metabolism of MAs by promoting foam cell formation
The influence of the landscape structure within buffer zones, catchment land use and instream environmental variables on mollusc communities in a medium-sized lowland river
The worldâs freshwater molluscan fauna is facing unprecedented threats from habitat loss and degradation. Declines in native populations are mostly attributed to the human impact, which results in reduced water quality. The objectives of our survey were to analyse the structure of the mollusc communities in a medium-sized lowland river and to determine the most important environmental variables at different spatial scales, including landscape structure, catchment land use and instream environmental factors that influence their structure. Our survey showed that a medium-sized river, that flows through areas included in the European Ecological Natura 2000 Network Programme of protected sites, provides diverse instream habitats and niches that support 47 mollusc species including Unio crassus, a bivalve of Community interest, whose conservation requires the designation of a special conservation area under the Habitats Directive Natura 2000. This survey showed that mollusc communities are impacted by several environmental variables that act together at multiple scales. The landscape structure within buffer zones, catchment land use and instream environmental variables were all important and influenced the structure of mollusc communities. Therefore, they should all be taken into consideration in the future restoration of the river, future management projects and programmes for the conservation of biodiversity in running waters. The results of this study may be directly applicable for the rehabilitation of river ecosystems and are recommended to stakeholders in their future decision concerning landscape planning, monitoring species and their habitats, conservation plans and management in accordance with the requirements of sustainable development
Neutrophil Extracellular Traps Directly Induce Epithelial and Endothelial Cell Death: A Predominant Role of Histones
Neutrophils play an important role in innate immunity by defending the host organism against invading microorganisms. Antimicrobial activity of neutrophils is mediated by release of antimicrobial peptides, phagocytosis as well as formation of neutrophil extracellular traps (NET). These structures are composed of DNA, histones and granular proteins such as neutrophil elastase and myeloperoxidase. This study focused on the influence of NET on the host cell functions, particularly on human alveolar epithelial cells as the major cells responsible for gas exchange in the lung. Upon direct interaction with epithelial and endothelial cells, NET induced cytotoxic effects in a dose-dependent manner, and digestion of DNA in NET did not change NET-mediated cytotoxicity. Pre-incubation of NET with antibodies against histones, with polysialic acid or with myeloperoxidase inhibitor but not with elastase inhibitor reduced NET-mediated cytotoxicity, suggesting that histones and myeloperoxidase are responsible for NET-mediated cytotoxicity. Although activated protein C (APC) did decrease the histone-induced cytotoxicity in a purified system, it did not change NET-induced cytotoxicity, indicating that histone-dependent cytotoxicity of NET is protected against APC degradation. Moreover, in LPS-induced acute lung injury mouse model, NET formation was documented in the lung tissue as well as in the bronchoalveolar lavage fluid. These data reveal the important role of protein components in NET, particularly histones, which may lead to host cell cytotoxicity and may be involved in lung tissue destruction
- âŠ