1,330 research outputs found

    Gill monogeneans of the chub mackerel, Scomber japonicus from Madeiran waters of the Atlantic Ocean, Portugal

    Get PDF
    Five species of monogeneans were recovered from the gill filaments of 181 chub mackerel, Scomber japonicus, from the Madeiran waters of the Atlantic Ocean, Portugal, during 2004/2005. The monogenean Pseudokuhnia minor showed the highest prevalence (98.68%) and a mean intensity of 28.23, followed by Kuhnia scombri (prevalence of 43.71% and mean intensity of 2.69) and K. scombercolias (prevalence of 39.1% and a mean intensity of 1.81). Kuhnia sprostonae and Grubea cochlear were rare, occurring in only one and five fish hosts respectively. No correlation between fish host length and mean intensity of infection with the three most abundant monogeneans was found. However, significant differences in prevalence and abundance were found in relation to date of sampling for P. minor, and all parasites were aggregated in their distribution.info:eu-repo/semantics/publishedVersio

    Temporal Trends and Drivers of Mountain Lion Depredation in California, USA

    Get PDF
    Increasing human populations and expanding development across the globe necessitate continual progress in understanding and mitigating human–wildlife conflict. California, USA has the largest human population and at least half of the state is suitable mountain lion (Puma concolor) habitat. The juxtaposition of high human abundance within and adjacent to mountain lion habitat make California relevant for understanding human–large carnivore conflict. We compiled 7,719 confirmed incidents of mountain lions depredating domestic animals over a 48-year period (1972–2019) to examine temporal trends in mountain lion depredations as well as factors influencing annual depredation rates at the county level. Linear regressions demonstrated that the overall number of depredation events and those involving pets (e.g., dogs [Canis lupus familiaris] and cats [Felis catus]) and small hoofstock (primarily sheep [Ovis aries] and goats [Capra aegagrus hircus]) have increased significantly over time with small hoofstock comprising the majority of depredations. Poisson regression models revealed human density and agricultural productivity were negatively associated with increasing depredation rates while amount of suitable habitat and number of mountain lions removed in the previous year were positively associated with increasing depredation rates. In general, our results point to smaller-sized hoofstock operations in areas of suitable mountain lion habitat as key factors in predicting mountain lion depredations in California. Further, the permanent removal of offending individuals appears to increase the potential for conflict in the following year. Broadly speaking, improving husbandry standards for pets and small hoofstock living in areas occupied by large carnivores may be the most effective way to reduce human–predator conflict in California and elsewhere

    Origin and Health Impacts of Emissions of Toxic By-Products and Fine Particles from Combustion and Thermal Treatment of Hazardous Wastes and Materials

    Get PDF
    High-temperature, controlled incineration and thermal treatment of contaminated soils, sediments, and wastes at Superfund sites are often preferred methods of remediation of contaminated sites under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 and related legislation. Although these methods may be executed safely, formation of toxic combustion or reaction by-products is still a cause of concern. Emissions of polycyclic aromatic hydrocarbons (PAHs); chlorinated hydrocarbons (CHCs), including polychlorinated dibenzo-p-dioxins and dibenzofurans; and toxic metals (e.g., chromium VI) have historically been the focus of combustion and health effects research. However, fine particulate matter (PM) and ultrafine PM, which have been documented to be related to cardiovascular disease, pulmonary disease, and cancer, have more recently become the focus of research. Fine PM and ultrafine PM are effective delivery agents for PAHs, CHCs, and toxic metals. In addition, it has recently been realized that brominated hydrocarbons (including brominated/chlorinated dioxins), redox-active metals, and redox-active persistent free radicals are also associated with PM emissions from combustion and thermal processes. In this article, we discuss the origin of each of these classes of pollutants, the nature of their association with combustion-generated PM, and the mechanisms of their known and potential health impacts

    Parametric study of prospective early commercial MHD power plants (PSPEC). General Electric Company, task 1: Parametric analysis

    Get PDF
    The performance and cost of moderate technology coal-fired open cycle MHD/steam power plant designs which can be expected to require a shorter development time and have a lower development cost than previously considered mature OCMHD/steam plants were determined. Three base cases were considered: an indirectly-fired high temperature air heater (HTAH) subsystem delivering air at 2700 F, fired by a state of the art atmospheric pressure gasifier, and the HTAH subsystem was deleted and oxygen enrichment was used to obtain requisite MHD combustion temperature. Coal pile to bus bar efficiencies in ease case 1 ranged from 41.4% to 42.9%, and cost of electricity (COE) was highest of the three base cases. For base case 2 the efficiency range was 42.0% to 45.6%, and COE was lowest. For base case 3 the efficiency range was 42.9% to 44.4%, and COE was intermediate. The best parametric cases in bases cases 2 and 3 are recommended for conceptual design. Eventual choice between these approaches is dependent on further evaluation of the tradeoffs among HTAH development risk, O2 plant integration, and further refinements of comparative costs

    Rhenium elemental and isotopic variations at magmatic temperatures

    Get PDF
    This work was funded by Natural Environment Research Council UK Standard Grant to RGH, AJD, and JP (NE/T001119).Recent analytical advances in the measurement of rhenium (Re) isotope ratios allow its potential as a palaeoredox and chemical weathering proxy to be explored. However, a successful isotopic proxy must be grounded by an understanding of its composition and behaviour in the solid Earth. Here, we present Re concentrations and Re isotopic (δ187Re) compositions for a well-characterised sequence of lavas from Hekla volcano, Iceland. The concentration of Re varies from 0.02 to 1.4 ng/g, decreasing from basalt to more evolved lavas. We show that the crystallisation and removal of magnetite is responsible for the Re decrease in this system. By contrast, δ187Re values for the same suite of samples show a relatively narrow range (−0.45 to −0.22 0/1000), suggesting minimal resolvable Re isotope fractionation between magnetite and the silicate melt. Together with other samples, including mid-ocean ridge basalts, these first igneous data can be used to estimate a baseline for terrestrial materials (δ187Re = −0.33 ± 0.15 0/1000, 2 s.d., n = 14), from which low-temperature Re isotope variations in Earth’s surficial environments can be assessed, alongside the global isotope mass balance of Re.Peer reviewe

    The closest elastic tensor of arbitrary symmetry to an elasticity tensor of lower symmetry

    Get PDF
    The closest tensors of higher symmetry classes are derived in explicit form for a given elasticity tensor of arbitrary symmetry. The mathematical problem is to minimize the elastic length or distance between the given tensor and the closest elasticity tensor of the specified symmetry. Solutions are presented for three distance functions, with particular attention to the Riemannian and log-Euclidean distances. These yield solutions that are invariant under inversion, i.e., the same whether elastic stiffness or compliance are considered. The Frobenius distance function, which corresponds to common notions of Euclidean length, is not invariant although it is simple to apply using projection operators. A complete description of the Euclidean projection method is presented. The three metrics are considered at a level of detail far greater than heretofore, as we develop the general framework to best fit a given set of moduli onto higher elastic symmetries. The procedures for finding the closest elasticity tensor are illustrated by application to a set of 21 moduli with no underlying symmetry.Comment: 48 pages, 1 figur

    Environmentally persistent free radicals decrease cardiac function before and after ischemia/reperfusion injury in vivo

    Get PDF
    Exposure to airborne particles is associated with increased cardiovascular morbidity and mortality. During the combustion of chlorine-containing hazardous materials and fuels, chlorinated hydrocarbons chemisorb to the surface of transition metal-oxide-containing particles, reduce the metal, and form an organic free radical. These radical-particle systems can survive in the environment for days and are called environmentally persistent free radicals (EPFRs). This study determined whether EPFRs could decrease left ventricular function before and after ischemia and reperfusion (I/R) in vivo. Male Brown-Norway rats were dosed (8mg/kg, intratracheal) 24h prior to testing with particles containing the EPFR of 1, 2-dichlorobenzene (DCB230). DCB230 treatment decreased systolic and diastolic function. DCB230 also produced pulmonary and cardiac inflammation. After ischemia, systolic, but not diastolic function was significantly decreased in DCB230-treated rats. Ventricular function was not affected by I/R in control rats. There was greater oxidative stress in the heart and increased 8-isoprostane (biomarker of oxidative stress) in the plasma of treated vs. control rats after I/R. These data demonstrate for the first time that DCB230 can produce inflammation and significantly decrease cardiac function at baseline and after I/R in vivo. Furthermore, these data suggest that EPFRs may be a risk factor for cardiac toxicity in healthy individuals and individuals with ischemic heart disease. Potential mechanisms involving cytokines/chemokines and/or oxidative stress are discussed. © 2011 Informa Healthcare USA, Inc

    Does body size predict the buzz-pollination frequencies used by bees?

    Get PDF
    Body size is an important trait linking pollinators and plants. Morphological matching between pollinators and plants is thought to reinforce pollinator fidelity, as the correct fit ensures that both parties benefit from the interaction. We investigated the influence of body size in a specialized pollination system (buzz‐pollination) where bees vibrate flowers to release pollen concealed within poricidal stamens. Specifically, we explored how body size influences the frequency of buzz‐pollination vibrations. Body size is expected to affect frequency as a result of the physical constraints it places on the indirect flight muscles that control the production of floral vibrations. Larger insects beat their wings less rapidly than smaller‐bodied insects when flying, but whether similar scaling relationships exist with floral vibrations has not been widely explored. This is important because the amount of pollen ejected is determined by the frequency of the vibration and the displacement of a bee's thorax. We conducted a field study in three ecogeographic regions (alpine, desert, grassland) and recorded flight and floral vibrations from freely foraging bees from 27 species across four families. We found that floral vibration frequencies were significantly higher than flight frequencies, but never exceeded 400 Hz. Also, only flight frequencies were negatively correlated with body size. As a bee's size increased, its buzz ratio (floral frequency/flight frequency) increased such that only the largest bees were capable of generating floral vibration frequencies that exceeded double that of their flight vibrations. These results indicate size affects the capacity of bees to raise floral vibration frequencies substantially above flight frequencies. This may put smaller bees at a competitive disadvantage because even at the maximum floral vibration frequency of 400 Hz, their inability to achieve comparable thoracic displacements as larger bees would result in generating vibrations with lower amplitudes, and thus less total pollen ejected for the same foraging effort
    corecore