576 research outputs found

    Using the Forest to See the Trees: Exploiting Context for Visual Object Detection and Localization

    Get PDF
    Recognizing objects in images is an active area of research in computer vision. In the last two decades, there has been much progress and there are already object recognition systems operating in commercial products. However, most of the algorithms for detecting objects perform an exhaustive search across all locations and scales in the image comparing local image regions with an object model. That approach ignores the semantic structure of scenes and tries to solve the recognition problem by brute force. In the real world, objects tend to covary with other objects, providing a rich collection of contextual associations. These contextual associations can be used to reduce the search space by looking only in places in which the object is expected to be; this also increases performance, by rejecting patterns that look like the target but appear in unlikely places. Most modeling attempts so far have defined the context of an object in terms of other previously recognized objects. The drawback of this approach is that inferring the context becomes as difficult as detecting each object. An alternative view of context relies on using the entire scene information holistically. This approach is algorithmically attractive since it dispenses with the need for a prior step of individual object recognition. In this paper, we use a probabilistic framework for encoding the relationships between context and object properties and we show how an integrated system provides improved performance. We view this as a significant step toward general purpose machine vision systems.United States. National Geospatial-Intelligence Agency (NEGI-1582-04-0004)United States. Army Research Office. Multidisciplinary University Research Initiative (Grant Number N00014-06-1-0734)National Science Foundation (U.S.). (Contract IIS-0413232)National Defense Science and Engineering Graduate Fellowshi

    O(N) methods in electronic structure calculations

    Full text link
    Linear scaling methods, or O(N) methods, have computational and memory requirements which scale linearly with the number of atoms in the system, N, in contrast to standard approaches which scale with the cube of the number of atoms. These methods, which rely on the short-ranged nature of electronic structure, will allow accurate, ab initio simulations of systems of unprecedented size. The theory behind the locality of electronic structure is described and related to physical properties of systems to be modelled, along with a survey of recent developments in real-space methods which are important for efficient use of high performance computers. The linear scaling methods proposed to date can be divided into seven different areas, and the applicability, efficiency and advantages of the methods proposed in these areas is then discussed. The applications of linear scaling methods, as well as the implementations available as computer programs, are considered. Finally, the prospects for and the challenges facing linear scaling methods are discussed.Comment: 85 pages, 15 figures, 488 references. Resubmitted to Rep. Prog. Phys (small changes

    Bias adjustment and ensemble recalibration methods for seasonal forecasting: a comprehensive intercomparison using the C3S dataset

    Get PDF
    This work presents a comprehensive intercomparison of diferent alternatives for the calibration of seasonal forecasts, ranging from simple bias adjustment (BA)-e.g. quantile mapping-to more sophisticated ensemble recalibration (RC) methods- e.g. non-homogeneous Gaussian regression, which build on the temporal correspondence between the climate model and the corresponding observations to generate reliable predictions. To be as critical as possible, we validate the raw model and the calibrated forecasts in terms of a number of metrics which take into account diferent aspects of forecast quality (association, accuracy, discrimination and reliability). We focus on one-month lead forecasts of precipitation and temperature from four state-of-the-art seasonal forecasting systems, three of them included in the Copernicus Climate Change Service dataset (ECMWF-SEAS5, UK Met Ofce-GloSea5 and Météo France-System5) for boreal winter and summer over two illustrative regions with diferent skill characteristics (Europe and Southeast Asia). Our results indicate that both BA and RC methods efectively correct the large raw model biases, which is of paramount importance for users, particularly when directly using the climate model outputs to run impact models, or when computing climate indices depending on absolute values/thresholds. However, except for particular regions and/or seasons (typically with high skill), there is only marginal added value-with respect to the raw model outputs-beyond this bias removal. For those cases, RC methods can outperform BA ones, mostly due to an improvement in reliability. Finally, we also show that whereas an increase in the number of members only modestly afects the results obtained from calibration, longer hindcast periods lead to improved forecast quality, particularly for RC methods.This work has been funded by the C3S activity on Evaluation and Quality Control for seasonal forecasts. JMG was partially supported by the project MULTI-SDM (CGL2015-66583-R, MINECO/FEDER). FJDR was partially funded by the H2020 EUCP project (GA 776613)

    The PASCAL Visual Object Classes (VOC) Challenge

    Get PDF
    The Pascal Visual Object Classes (VOC) challenge is a benchmark in visual object category recognition and detection, providing the vision and machine learning communities with a standard dataset of images and annotation, and standard evaluation procedures. Organised annually from 2005 to present, the challenge and its associated dataset has become accepted as the benchmark for object detection. This paper describes the dataset and evaluation procedure. We review the state-of-the-art in evaluated methods for both classification and detection, analyse whether the methods are statistically different, what they are learning from the images (e.g. the object or its context), and what the methods find easy or confuse. The paper concludes with lessons learnt in the three year history of the challenge, and proposes directions for future improvement and extension. © 2009 Springer Science+Business Media, LLC

    Overt Attention and Context Factors: The Impact of Repeated Presentations, Image Type, and Individual Motivation

    Get PDF
    The present study investigated the dynamic of the attention focus during observation of different categories of complex scenes and simultaneous consideration of individuals' memory and motivational state. We repeatedly presented four types of complex visual scenes in a pseudo-randomized order and recorded eye movements. Subjects were divided into groups according to their motivational disposition in terms of action orientation and individual rating of scene interest

    Highlights from the Pierre Auger Observatory

    Full text link
    The Pierre Auger Observatory is the world's largest cosmic ray observatory. Our current exposure reaches nearly 40,000 km2^2 str and provides us with an unprecedented quality data set. The performance and stability of the detectors and their enhancements are described. Data analyses have led to a number of major breakthroughs. Among these we discuss the energy spectrum and the searches for large-scale anisotropies. We present analyses of our Xmax_{max} data and show how it can be interpreted in terms of mass composition. We also describe some new analyses that extract mass sensitive parameters from the 100% duty cycle SD data. A coherent interpretation of all these recent results opens new directions. The consequences regarding the cosmic ray composition and the properties of UHECR sources are briefly discussed.Comment: 9 pages, 12 figures, talk given at the 33rd International Cosmic Ray Conference, Rio de Janeiro 201

    Reconstruction of inclined air showers detected with the Pierre Auger Observatory

    Full text link
    We describe the method devised to reconstruct inclined cosmic-ray air showers with zenith angles greater than 6060^\circ detected with the surface array of the Pierre Auger Observatory. The measured signals at the ground level are fitted to muon density distributions predicted with atmospheric cascade models to obtain the relative shower size as an overall normalization parameter. The method is evaluated using simulated showers to test its performance. The energy of the cosmic rays is calibrated using a sub-sample of events reconstructed with both the fluorescence and surface array techniques. The reconstruction method described here provides the basis of complementary analyses including an independent measurement of the energy spectrum of ultra-high energy cosmic rays using very inclined events collected by the Pierre Auger Observatory.Comment: 27 pages, 19 figures, accepted for publication in Journal of Cosmology and Astroparticle Physics (JCAP

    A search for point sources of EeV photons

    Full text link
    Measurements of air showers made using the hybrid technique developed with the fluorescence and surface detectors of the Pierre Auger Observatory allow a sensitive search for point sources of EeV photons anywhere in the exposed sky. A multivariate analysis reduces the background of hadronic cosmic rays. The search is sensitive to a declination band from -85{\deg} to +20{\deg}, in an energy range from 10^17.3 eV to 10^18.5 eV. No photon point source has been detected. An upper limit on the photon flux has been derived for every direction. The mean value of the energy flux limit that results from this, assuming a photon spectral index of -2, is 0.06 eV cm^-2 s^-1, and no celestial direction exceeds 0.25 eV cm^-2 s^-1. These upper limits constrain scenarios in which EeV cosmic ray protons are emitted by non-transient sources in the Galaxy.Comment: 28 pages, 10 figures, accepted for publication in The Astrophysical Journa

    Ultrahigh-energy neutrino follow-up of Gravitational Wave events GW150914 and GW151226 with the Pierre Auger Observatory

    Get PDF
    On September 14, 2015 the Advanced LIGO detectors observed their first gravitational-wave (GW) transient GW150914. This was followed by a second GW event observed on December 26, 2015. Both events were inferred to have arisen from the merger of black holes in binary systems. Such a system may emit neutrinos if there are magnetic fields and disk debris remaining from the formation of the two black holes. With the surface detector array of the Pierre Auger Observatory we can search for neutrinos with energy above 100 PeV from point-like sources across the sky with equatorial declination from about -65 deg. to +60 deg., and in particular from a fraction of the 90% confidence-level (CL) inferred positions in the sky of GW150914 and GW151226. A targeted search for highly-inclined extensive air showers, produced either by interactions of downward-going neutrinos of all flavors in the atmosphere or by the decays of tau leptons originating from tau-neutrino interactions in the Earth's crust (Earth-skimming neutrinos), yielded no candidates in the Auger data collected within ±500\pm 500 s around or 1 day after the coordinated universal time (UTC) of GW150914 and GW151226, as well as in the same search periods relative to the UTC time of the GW candidate event LVT151012. From the non-observation we constrain the amount of energy radiated in ultrahigh-energy neutrinos from such remarkable events.Comment: Published version. Added journal reference and DOI. Added Report Numbe

    Distribution of the Iberian Calopteryx Damselflies and Its Relation with Bioclimatic Belts: Evolutionary and Biogeographic Implications

    Get PDF
    Using bioclimatic belts as habitat and distribution predictors, the present study examines the implications of the potential distributions of the three Iberian damselflies, Calopteryx Leach (Odonata: Calopterygidae), with the aim of investigating the possible consequences in specific interactions among the species from a sexual selection perspective and of discussing biogeographical patterns. To obtain the known distributions, the literature on this genus was reviewed, relating the resulting distributions to bioclimatic belts. Specific patterns related to bioclimatic belts were clearly observed in the Mediterranean region. The potential distribution maps and relative frequencies might involve latitudinal differences in relative abundances, C. virgo meridionalis Sélys being the most abundant species in the Eurosiberian region, C. xanthostoma (Charpentier) in the northern half of the Mediterranean region and C. haemorrhoidalis (Vander Linden) in the rest of this region. These differences might explain some previously described latitudinal differences in secondary sexual traits in the three species. Changes in relative abundances may modulate interactions among these species in terms of sexual selection and may produce sexual character displacement in this genus. C. virgo meridionalis distribution and ecological requirements explain its paleobiogeography as a species which took refuge in Iberia during the Würm glaciation. Finally, possible consequences in species distributions and interactions are discussed within a global climate change context
    corecore