531 research outputs found

    A modified TILLING approach to detect induced mutations in tetraploid and hexaploid wheat

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Wheat (<it>Triticum </it>ssp.) is an important food source for humans in many regions around the world. However, the ability to understand and modify gene function for crop improvement is hindered by the lack of available genomic resources. TILLING is a powerful reverse genetics approach that combines chemical mutagenesis with a high-throughput screen for mutations. Wheat is specially well-suited for TILLING due to the high mutation densities tolerated by polyploids, which allow for very efficient screens. Despite this, few TILLING populations are currently available. In addition, current TILLING screening protocols require high-throughput genotyping platforms, limiting their use.</p> <p>Results</p> <p>We developed mutant populations of pasta and common wheat and organized them for TILLING. To simplify and decrease costs, we developed a non-denaturing polyacrylamide gel set-up that uses ethidium bromide to detect fragments generated by crude celery juice extract digestion of heteroduplexes. This detection method had similar sensitivity as traditional LI-COR screens, suggesting that it represents a valid alternative. We developed genome-specific primers to circumvent the presence of multiple homoeologous copies of our target genes. Each mutant library was characterized by TILLING multiple genes, revealing high mutation densities in both the hexaploid (~1/38 kb) and tetraploid (~1/51 kb) populations for 50% GC targets. These mutation frequencies predict that screening 1,536 lines for an effective target region of 1.3 kb with 50% GC content will result in ~52 hexaploid and ~39 tetraploid mutant alleles. This implies a high probability of obtaining knock-out alleles (<it>P </it>= 0.91 for hexaploid, <it>P </it>= 0.84 for tetraploid), in addition to multiple missense mutations. In total, we identified over 275 novel alleles in eleven targeted gene/genome combinations in hexaploid and tetraploid wheat and have validated the presence of a subset of them in our seed stock.</p> <p>Conclusion</p> <p>We have generated reverse genetics TILLING resources for pasta and bread wheat and achieved a high mutation density in both populations. We also developed a modified screening method that will lower barriers to adopt this promising technology. We hope that the use of this reverse genetics resource will enable more researchers to pursue wheat functional genomics and provide novel allelic diversity for wheat improvement.</p

    A TILLING by sequencing approach to identify induced mutations in sunflower genes

    Get PDF
    The Targeting Induced Local Lesions in Genomes (TILLING) technology is a reverse genetic strategy broadly applicable to every kind of genome and represents an attractive tool for functional genomic and agronomic applications. It consists of chemical random mutagenesis followed by high-throughput screening of point mutations in targeted genomic regions. Although multiple methods for mutation discovery in amplicons have been described, next-generation sequencing (NGS) is the tool of choice for mutation detection because it quickly allows for the analysis of a large number of amplicons. The aim of the present work was to screen a previously generated sunflower TILLING population and identify alterations in genes involved in several important and complex physiological processes. Twenty-one candidate sunflower genes were chosen as targets for the screening. The TILLING by sequencing strategy allowed us to identify multiple mutations in selected genes and we subsequently validated 16 mutations in 11 different genes through Sanger sequencing. In addition to addressing challenges posed by outcrossing, our detection and validation of mutations in multiple regulatory loci highlights the importance of this sunflower population as a genetic resource

    Chromosomal polymorphism of ribosomal genes in the genus Oryza

    Get PDF
    The genes encoding for 18S–5.8S–28S ribosomal RNA (rDNA) are both conserved and diversified. We used rDNA as probe in the fluorescent in situ hybridization (rDNA-FISH) to localized rDNAs on chromosomes of 15 accessions representing ten Oryza species. These included cultivated and wild species of rice, and four of them are tetraploids. Our results reveal polymorphism in the number of rDNA loci, in the number of rDNA repeats, and in their chromosomal positions among Oryza species. The numbers of rDNA loci varies from one to eight among Oryza species. The rDNA locus located at the end of the short arm of chromosome 9 is conserved among the genus Oryza. The rDNA locus at the end of the short arm of chromosome 10 was lost in some of the accessions. In this study, we report two genome specific rDNA loci in the genus Oryza. One is specific to the BB genome, which was localized at the end of the short arm of chromosome 4. Another may be specific to the CC genome, which was localized in the proximal region of the short arm of chromosome 5. A particular rDNA locus was detected as stretched chromatin with bright signals at the proximal region of the short arm of chromosome 4 in O.grandiglumis by rDNA-FISH. We suggest that chromosomal inversion and the amplification and transposition of rDNA might occur during Oryza species evolution. The possible mechanisms of cyto-evolution in tetraploid Oryza species are discussed

    The c-Myc Target Glycoprotein1bα Links Cytokinesis Failure to Oncogenic Signal Transduction Pathways in Cultured Human Cells

    Get PDF
    An increase in chromosome number, or polyploidization, is associated with a variety of biological changes including breeding of cereal crops and flowers, terminal differentiation of specialized cells such as megakaryocytes, cellular stress and oncogenic transformation. Yet it remains unclear how cells tolerate the major changes in gene expression, chromatin organization and chromosome segregation that invariably accompany polyploidization. We show here that cancer cells can initiate increases in chromosome number by inhibiting cell division through activation of glycoprotein1b alpha (GpIbα), a component of the c-Myc signaling pathway. We are able to recapitulate cytokinesis failure in primary cells by overexpression of GpIbα in a p53-deficient background. GpIbα was found to localize to the cleavage furrow by microscopy analysis and, when overexpressed, to interfere with assembly of the cellular cortical contraction apparatus and normal division. These results indicate that cytokinesis failure and tetraploidy in cancer cells are directly linked to cellular hyperproliferation via c-Myc induced overexpression of GpIbα

    Molecular architecture and functional analysis of NetB, a pore-forming toxin from Clostridium perfringens

    Get PDF
    NetB is a pore-forming toxin produced by Clostridium perfringens and has been reported to play a major role in the pathogenesis of avian necrotic enteritis, a disease that has emerged due to the removal of antibiotics in animal feedstuffs. Here we present the crystal structure of the pore-form of NetB solved to 3.9Å. The heptameric assembly shares structural homology to the Staphylococcal α-hemolysin. However, the rim domain, a region that is thought to interact with the target cell membrane shows sequence and structural divergence leading to the alteration of a phosphocholine binding pocket found in the staphylococcal toxins. Consistent with the structure we show that NetB does not bind phosphocholine efficiently but instead interacts directly with cholesterol leading to enhanced oligomerisation and pore formation. Finally we have identified conserved and non-conserved amino acid positions within the rim loops that significantly affect binding and toxicity of NetB. These findings present new insights into the mode of action of these pore-forming toxins enabling the design of more effective control measures against necrotic enteritis and providing potential new tools to the field of bionanotechnology

    Chromosome and DNA methylation dynamics during meiosis in autotetraploid Arabidopsis arenosa

    Get PDF
    Variation in chromosome number due to polyploidy can seriously compromise meiotic stability. In autopolyploids, the presence of more than two homologous chromosomes may result in complex pairing patterns and subsequent anomalous chromosome segregation. In this context, chromocenter, centromeric, telomeric and ribosomal DNA locus topology and DNA methylation patterns were investigated in the natural autotetraploid, Arabidopsis arenosa. The data show that homologous chromosome recognition and association initiates at telomeric domains in premeiotic interphase, followed by quadrivalent pairing of ribosomal 45S RNA gene loci (known as NORs) at leptotene. On the other hand, centromeric regions at early leptotene show pairwise associations rather than associations in fours. These pairwise associations are maintained throughout prophase I, and therefore likely to be related to the diploid-like behavior of A. arenosa chromosomes at metaphase I, where only bivalents are observed. In anthers, both cells at somatic interphase as well as at premeiotic interphase show 5-methylcytosine (5-mC) dispersed throughout the nucleus, contrasting with a preferential co-localization with chromocenters observed in vegetative nuclei. These results show for the first time that nuclear distribution patterns of 5-mC are simultaneously reshuffled in meiocytes and anther somatic cells. During prophase I, 5-mC is detected in extended chromatin fibers and chromocenters but interestingly is excluded from the NORs what correlates with the pairing patter

    Identification of Brassica oleracea monosomic alien chromosome addition lines with molecular markers reveals extensive gene duplication

    Full text link
    Chromosomes of Brassica oleracea (2n=18) were dissected from the resynthesized amphidiploid B. napus Hakuran by repeated backcrosses to B. campestris (2n=20), creating a series of monosomic alien chromosome addition line plants (2n=21). Using morphological, isozyme and restriction fragment length polymorphism markers (RFLPs), 81 putative loci were identified. Of nine possible synteny groups, seven were represented in the 25 monosomic addition plants tested. Sequences homologous to 26% of the 61 DNA clones utilized (80% were cDNA clones) were found on more than one synteny group, indicating a high level of gene duplication. Anomalous synteny associations were detected in four 2n=21 plants. One of these plants showed two markers from one B. oleracea chromosome associated with a second complete B. oleracea synteny group, suggesting translocation or recombination between non-homologous chromosomes in Hakuran or the backcross derivatives. The other three 2n=21 plants each contained two or more B. oleracea synteny groups, suggesting chromosome substitution.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47572/1/438_2004_Article_BF00265054.pd
    • …
    corecore