505 research outputs found

    Self‐consistent intermediate Hamiltonians : A coupled cluster type formulation of the singles and doubles configuration interaction matrix dressing

    Get PDF
    This paper presents a new self‐consistent dressing of a singles and doubles configuration interaction matrix which insures size‐consistency, separability into closed‐shell subsystems if localized molecular orbitals (MOs) are used, and which includes all fourth order corrections. This method yields, among several schemes, a reformulation of the coupled cluster method, including fully the cluster operators of single and double excitations, and partially those of the triples (Bartlett’s algorithm named CCSDT‐1a). Further improvement can be easily included by adding exclusion principle violating corrections. Since it leads to a matrix diagonalization, the method behaves correctly in case of near degeneracies between the reference determinant and some doubles. Due to its flexibility this formulation offers the possibility of consistent combination with less expensive treatments for the study of very large [email protected] ; [email protected]

    Influence of severe plastic deformation on the precipitation hardening of a FeSiTi steel

    Full text link
    The combined strengthening effects of grain refinement and high precipitated volume fraction (~6at.%) on the mechanical properties of FeSiTi alloy subjected to SPD processing prior to aging treatment were investigated by atom probe tomography and scanning transmission electron microscopy. It was shown that the refinement of the microstructure affects the precipitation kinetics and the spatial distribution of the secondary hardening intermetallic phase, which was observed to nucleate heterogeneously on dislocations and sub-grain boundaries. It was revealed that alloys successively subjected to these two strengthening mechanisms exhibit a lower increase in mechanical strength than a simple estimation based on the summation of the two individual strengthening mechanisms

    Seasonal Patterns of Gastrointestinal Illness and Streamflow along the Ohio River

    Get PDF
    Waterborne gastrointestinal (GI) illnesses demonstrate seasonal increases associated with water quality and meteorological characteristics. However, few studies have been conducted on the association of hydrological parameters, such as streamflow, and seasonality of GI illnesses. Streamflow is correlated with biological contamination and can be used as proxy for drinking water contamination. We compare seasonal patterns of GI illnesses in the elderly (65 years and older) along the Ohio River for a 14-year period (1991–2004) to seasonal patterns of streamflow. Focusing on six counties in close proximity to the river, we compiled weekly time series of hospitalizations for GI illnesses and streamflow data. Seasonal patterns were explored using Poisson annual harmonic regression with and without adjustment for streamflow. GI illnesses demonstrated significant seasonal patterns with peak timing preceding peak timing of streamflow for all six counties. Seasonal patterns of illness remain consistent after adjusting for streamflow. This study found that the time of peak GI illness precedes the peak of streamflow, suggesting either an indirect relationship or a more direct path whereby pathogens enter water supplies prior to the peak in streamflow. Such findings call for interdisciplinary research to better understand associations among streamflow, pathogen loading, and rates of gastrointestinal illnesses

    Elevational species richness gradients in a hyperdiverse insect taxon: a global meta-study on geometrid moths

    Get PDF
    AIMS: We aim to document elevational richness patterns of geometrid moths in a globally replicated, multi-gradient setting, and to test general hypotheses on environmental and spatial effects (i.e. productivity, temperature, precipitation, area, mid-domain effect and human habitat disturbance) on these richness patterns. LOCATION: Twenty-six elevational gradients world-wide (latitudes 28° S to 51° N). METHODS: We compiled field datasets on elevational gradients for geometrid moths, a lepidopteran family, and documented richness patterns across each gradient while accounting for local undersampling of richness. Environmental and spatial predictor variables as well as habitat disturbance were used to test various hypotheses. Our analyses comprised two pathways: univariate correlations within gradients, and multivariate modelling on pooled data after correcting for overall variation in richness among different gradients. RESULTS: The majority of gradients showed midpeak patterns of richness, irrespective of climate and geographical location. The exclusion of human-affected sampling plots did not change these patterns. Support for univariate main drivers of richness was generally low, although there was idiosyncratic support for particular predictors on single gradients. Multivariate models, in agreement with univariate results, provided the strongest support for an effect of area-integrated productivity, or alternatively for an elevational area effect. Temperature and the mid-domain effect received support as weaker, modulating covariates, while precipitation-related variables had no explanatory potential. MAIN CONCLUSIONS: Despite the predicted decreasing diversity–temperature relationship in ectotherms, geometrid moths are similar to ants and salamanders as well as small mammals and ferns in having predominantly their highest diversity at mid-elevations. As in those comparative analyses, single or clear sets of drivers are elusive, but both productivity and area appear to be influential. More comparative elevational studies for various insect taxa are necessary for a more comprehensive understanding of elevational diversity and productivity

    Volumetry of [11C]-methionine PET uptake and MRI contrast enhancement in patients with recurrent glioblastoma multiforme

    Get PDF
    We investigated the relationship between three-dimensional volumetric data of the metabolically active tumour volume assessed using [(11)C]-methionine positron emission tomography (MET-PET) and the area of gadolinium-diethylenetriaminepentaacetic acid (Gd-DTPA) enhancement assessed using magnetic resonance imaging (MRI) in patients with recurrent glioblastoma (GBM).MET-PET and contrast-enhanced MRI with Gd-DTPA were performed in 12 uniformly pretreated patients with recurrent GBM. To calculate the volumes in cubic centimetres, a threshold-based volume-of-interest (VOI) analysis of the metabolically active tumour volume (MET uptake indexes of > or = 1.3 and > or = 1.5) and of the area of Gd-DTPA enhancement was performed after coregistration of all images.In all patients, the metabolically active tumour volume as shown using a MET uptake index of > or = 1.3 was larger than the volume of Gd-DTPA enhancement (30.2 + or - 22.4 vs. 13.7 + or - 10.6 cm(3); p = 0.04). Metabolically active tumour volumes as shown using MET uptake indexes of > or =1.3 and > or = 1.5 and the volumes of Gd-DTPA enhancement showed a positive correlation (r = 0.76, p = 0.003, for an index of > or =1.3, and r = 0.74, p = 0.005, for an index of > or =1.5).The present data suggest that in patients with recurrent GBM the metabolically active tumour volume may be substantially underestimated by Gd-DTPA enhancement. The findings support the notion that complementary information derived from MET uptake and Gd-DTPA enhancement may be helpful in developing individualized, patient-tailored therapy strategies in patients with recurrent GBM

    Arthropod distribution in a tropical rainforest: tackling a four dimensional puzzle

    Get PDF
    Quantifying the spatio-temporal distribution of arthropods in tropical rainforests represents a first step towards scrutinizing the global distribution of biodiversity on Earth. To date moststudies have focused on narrow taxonomic groups or lack a design that allows partitioning of the components of diversity. Here, we consider an exceptionally large dataset (113,952 individuals representing 5,858 species), obtained from the San Lorenzo forest in Panama, where the phylogenetic breadth of arthropod taxa was surveyed using 14 protocols targeting the soil, litter, understory, lower and upper canopy habitats, replicated across seasons in 2003 and 2004. This dataset is used to explore the relative influence of horizontal, vertical and seasonal drivers of arthropod distribution in this forest. We considered arthropod abundance, observed and estimated species richness, additive decomposition of species richness, multiplicative partitioning of species diversity, variation in species composition, species turnover and guild structure as components of diversity. At the scale of our study (2km of distance, 40m in height and 400 days), the effects related to the vertical and seasonal dimensions were most important. Most adult arthropods were collected from the soil/ litter or the upper canopy and species richness was highest in the canopy. We compared the distribution of arthropods and trees within our study system. Effects related to the seasonal dimension were stronger for arthropods than for trees. We conclude that: (1) models of beta diversity developed for tropical trees are unlikely to be applicable to tropical arthropods; (2) it is imperative that estimates of global biodiversity derived from mass collecting of arthropods in tropical rainforests embrace the strong vertical and seasonal partitioning observed here; and (3) given the high species turnover observed between seasons, global climate change may have severe consequences for rainforest arthropods

    Standard setting: Comparison of two methods

    Get PDF
    BACKGROUND: The outcome of assessments is determined by the standard-setting method used. There is a wide range of standard – setting methods and the two used most extensively in undergraduate medical education in the UK are the norm-reference and the criterion-reference methods. The aims of the study were to compare these two standard-setting methods for a multiple-choice question examination and to estimate the test-retest and inter-rater reliability of the modified Angoff method. METHODS: The norm – reference method of standard -setting (mean minus 1 SD) was applied to the 'raw' scores of 78 4th-year medical students on a multiple-choice examination (MCQ). Two panels of raters also set the standard using the modified Angoff method for the same multiple-choice question paper on two occasions (6 months apart). We compared the pass/fail rates derived from the norm reference and the Angoff methods and also assessed the test-retest and inter-rater reliability of the modified Angoff method. RESULTS: The pass rate with the norm-reference method was 85% (66/78) and that by the Angoff method was 100% (78 out of 78). The percentage agreement between Angoff method and norm-reference was 78% (95% CI 69% – 87%). The modified Angoff method had an inter-rater reliability of 0.81 – 0.82 and a test-retest reliability of 0.59–0.74. CONCLUSION: There were significant differences in the outcomes of these two standard-setting methods, as shown by the difference in the proportion of candidates that passed and failed the assessment. The modified Angoff method was found to have good inter-rater reliability and moderate test-retest reliability

    Arthropod distribution in a tropical rainforest: tackling a four dimensional puzzle

    Get PDF
    Quantifying the spatio-temporal distribution of arthropods in tropical rainforests represents a first step towards scrutinizing the global distribution of biodiversity on Earth. To date most studies have focused on narrow taxonomic groups or lack a design that allows partitioning of the components of diversity. Here, we consider an exceptionally large dataset (113,952 individuals representing 5,858 species), obtained from the San Lorenzo forest in Panama, where the phylogenetic breadth of arthropod taxa was surveyed using 14 protocols targeting the soil, litter, understory, lower and upper canopy habitats, replicated across seasons in 2003 and 2004. This dataset is used to explore the relative influence of horizontal, vertical and seasonal drivers of arthropod distribution in this forest. We considered arthropod abundance, observed and estimated species richness, additive decomposition of species richness, multiplicative partitioning of species diversity, variation in species composition, species turnover and guild structure as components of diversity. At the scale of our study (2km of distance, 40m in height and 400 days), the effects related to the vertical and seasonal dimensions were most important. Most adult arthropods were collected from the soil/litter or the upper canopy and species richness was highest in the canopy. We compared the distribution of arthropods and trees within our study system. Effects related to the seasonal dimension were stronger for arthropods than for trees. We conclude that: (1) models of beta diversity developed for tropical trees are unlikely to be applicable to tropical arthropods; (2) it is imperative that estimates of global biodiversity derived from mass collecting of arthropods in tropical rainforests embrace the strong vertical and seasonal partitioning observed here; and (3) given the high species turnover observed between seasons, global climate change may have severe consequences for rainforest arthropods1012CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQSolVin-Solvay SA; Smithsonian Institution; Smithsonian Tropical Research Institute; United Nations Environment Programme; Smithsonian Institution; Smithsonian National Museum of Natural History; European Science Foundation (ESF); Global Canopy Programme; Czech Science foundation GACR grant; European Social Fund (ESF); Ministry of Education, Youth & Sports - Czech Republic; French National Research Agency (ANR); Research Council of Norway; Grant Agency of the Czech Republi
    • 

    corecore