2,946 research outputs found
The survivability of phyllosilicates and carbonates impacting Stardust Al foils: Facilitating the search for cometary water
Comet 81P/Wild 2 samples returned by NASA's Stardust mission provide an unequalled opportunity to study the contents of, and hence conditions and processes operating on, comets. They can potentially validate contentious interpretations of cometary infrared spectra and in situ mass spectrometry data: specifically the identification of phyllosilicates and carbonates. However, Wild 2 dust was collected via impact into capture media at ~6 km s−1, leading to uncertainty as to whether these minerals were captured intact, and, if subjected to alteration, whether they remain recognizable. We simulated Stardust Al foil capture conditions using a two‐stage light‐gas gun, and directly compared transmission electron microscope analyses of pre‐ and postimpact samples to investigate survivability of lizardite and cronstedtite (phyllosilicates) and calcite (carbonate). We find the phyllosilicates do not survive impact as intact crystalline materials but as moderately to highly vesiculated amorphous residues lining resultant impact craters, whose bulk cation to Si ratios remain close to that of the impacting grain. Closer inspection reveals variation in these elements on a submicron scale, where impact‐induced melting accompanied by reducing conditions (due to the production of oxygen scavenging molten Al from the target foils) has resulted in the production of native silicon and Fe‐ and Fe‐Si‐rich phases. In contrast, large areas of crystalline calcite are preserved within the calcite residue, with smaller regions of vesiculated, Al‐bearing calcic glass. Unambiguous identification of calcite impactors on Stardust Al foil is therefore possible, while phyllosilicate impactors may be inferred from vesiculated residues with appropriate bulk cation to Si ratios. Finally, we demonstrate that the characteristic textures and elemental distributions identifying phyllosilicates and carbonates by transmission electron microscopy can also be observed by state‐of‐the‐art scanning electron microscopy providing rapid, nondestructive initial mineral identifications in Stardust residues
Crystalline Silicate Feature of the Vega-like star HD145263
We have observed the 8-13 m spectrum (R250) of the Vega-like star
candidate HD145263 using Subaru/COMICS. The spectrum of HD145263 shows the
broad trapezoidal silicate feature with the shoulders at 9.3 m and 11.44
m, indicating the presence of crystalline silicate grains. This detection
implies that crystalline silicate may also be commonly present around Vega-like
stars. The 11.44 m feature is slightly shifted to a longer wavelength
compared to the usual 11.2-3 m crystalline forsterite feature detected
toward Herbig Ae/Be stars and T Tauri stars. Although the peak shift due to the
effects of the grain size can not be ruled out, we suggest that Fe-bearing
crystalline olivine explains the observed peak wavelength fairly well.
Fe-bearing silicates are commonly found in meteorites and most interplanetary
dust particles, which originate from planetesimal-like asteroids. According to
studies of meteorites, Fe-bearing silicate must have been formed in asteroidal
planetesimals, supporting the scenario that dust grains around Vega-like stars
are of planetesimal origin, if the observed 11.44 m peak is due to
Fe-bearing silicates.Comment: accepted for Publication in ApJ
The effect of the regular solution model in the condensation of protoplanetary dust
We utilize a chemical equilibrium code in order to study the condensation
process which occurs in protoplanetary discs during the formation of the first
solids. The model specifically focuses on the thermodynamic behaviour on the
solid species assuming the regular solution model. For each solution, we
establish the relationship between the activity of the species, the composition
and the temperature using experimental data from the literature. We then apply
the Gibbs free energy minimization method and study the resulting condensation
sequence for a range of temperatures and pressures within a protoplanetary
disc. Our results using the regular solution model show that grains condense
over a large temperature range and therefore throughout a large portion of the
disc. In the high temperature region (T > 1400 K) Ca-Al compounds dominate and
the formation of corundum is sensitive to the pressure. The mid-temperature
region is dominated by Fe(s) and silicates such as Mg2SiO4 and MgSiO3 . The
chemistry of forsterite and enstatite are strictly related, and our simulations
show a sequence of forsterite-enstatite-forsterite with decreasing temperature.
In the low temperature regions (T < 600 K) a range of iron compounds and
sulfides form. We also run simulations using the ideal solution model and see
clear differences in the resulting condensation sequences with changing
solution model In particular, we find that the turning point in which
forsterite replaces enstatite in the low temperature region is sensitive to the
solution model. Our results show that the ideal solution model is often a poor
approximation to experimental data at most temperatures important in
protoplanetary discs. We find some important differences in the resulting
condensation sequences when using the regular solution model, and suggest that
this model should provide a more realistic condensation sequence.Comment: MNRAS: Accepted 2011 February 16. Received 2011 February 14; in
original form 2010 July 2
Recommended from our members
The Stardust – a successful encounter with the remarkable comet Wild 2
On January 2, 2004 the Stardust spacecraft completed a close flyby of comet Wild2 (P81). Flying at a relative speed of 6.1 km/s within 237km of the 5 km nucleus, the spacecraft took 72 close-in images, measured the flux of impacting particles and did TOF mass spectrometry
EuroMarine Research Strategy Report: Deliverable 3.2. Seventh Framework Programme Project EuroMarine
Cross-protection against European swine influenza viruses in the context of infection immunity against the 2009 pandemic H1N1 virus : studies in the pig model of influenza
Pigs are natural hosts for the same influenza virus subtypes as humans and are a valuable model for cross-protection studies with influenza. In this study, we have used the pig model to examine the extent of virological protection between a) the 2009 pandemic H1N1 (pH1N1) virus and three different European H1 swine influenza virus (SIV) lineages, and b) these H1 viruses and a European H3N2 SIV. Pigs were inoculated intranasally with representative strains of each virus lineage with 6- and 17-week intervals between H1 inoculations and between H1 and H3 inoculations, respectively. Virus titers in nasal swabs and/or tissues of the respiratory tract were determined after each inoculation. There was substantial though differing cross-protection between pH1N1 and other H1 viruses, which was directly correlated with the relatedness in the viral hemagglutinin (HA) and neuraminidase (NA) proteins. Cross-protection against H3N2 was almost complete in pigs with immunity against H1N2, but was weak in H1N1/pH1N1-immune pigs. In conclusion, infection with a live, wild type influenza virus may offer substantial cross-lineage protection against viruses of the same HA and/or NA subtype. True heterosubtypic protection, in contrast, appears to be minimal in natural influenza virus hosts. We discuss our findings in the light of the zoonotic and pandemic risks of SIVs
Casimir Effect as a Test for Thermal Corrections and Hypothetical Long-Range Interactions
We have performed a precise experimental determination of the Casimir
pressure between two gold-coated parallel plates by means of a micromachined
oscillator. In contrast to all previous experiments on the Casimir effect,
where a small relative error (varying from 1% to 15%) was achieved only at the
shortest separation, our smallest experimental error (%) is achieved
over a wide separation range from 170 nm to 300 nm at 95% confidence. We have
formulated a rigorous metrological procedure for the comparison of experiment
and theory without resorting to the previously used root-mean-square deviation,
which has been criticized in the literature. This enables us to discriminate
among different competing theories of the thermal Casimir force, and to resolve
a thermodynamic puzzle arising from the application of Lifshitz theory to real
metals. Our results lead to a more rigorous approach for obtaining constraints
on hypothetical long-range interactions predicted by extra-dimensional physics
and other extensions of the Standard Model. In particular, the constraints on
non-Newtonian gravity are strengthened by up to a factor of 20 in a wide
interaction range at 95% confidence.Comment: 17 pages, 7 figures, Sixth Alexander Friedmann International Seminar
on Gravitation and Cosmolog
Rigorous approach to the comparison between experiment and theory in Casimir force measurements
In most experiments on the Casimir force the comparison between measurement
data and theory was done using the concept of the root-mean-square deviation, a
procedure that has been criticized in literature. Here we propose a special
statistical analysis which should be performed separately for the experimental
data and for the results of the theoretical computations. In so doing, the
random, systematic, and total experimental errors are found as functions of
separation, taking into account the distribution laws for each error at 95%
confidence. Independently, all theoretical errors are combined to obtain the
total theoretical error at the same confidence. Finally, the confidence
interval for the differences between theoretical and experimental values is
obtained as a function of separation. This rigorous approach is applied to two
recent experiments on the Casimir effect.Comment: 10 pages, iopart.cls is used, to appear in J. Phys. A (special issue:
Proceedings of QFEXT05, Barcelona, Sept. 5-9, 2005
Modelling polarization properties of comet 1P/Halley using a mixture of compact and aggregate particles
Recently, the result obtained from `Stardust' mission suggests that the
overall ratio of compact to aggregate particles is 65:35 (or 13:7) for Comet
81P/Wild 2 (Burchell et al. 2008). In the present work, we propose a model
which considers cometary dust as a mixture of compact and aggregate particles,
with composition of silicate and organic. We consider compact particles as
spheroidal particles and aggregates as BCCA and BAM2 aggregate with some size
distribution. For modeling Comet 1P/ Halley, the power-law size distribution
n(a)= a^{-2.6}, for both compact and aggregate particles is taken. We take a
mixture of BAM2 and BCCA aggregates with a lower and upper cutoff size around
0.20 and 1. We also take a mixture of prolate, spherical and
oblate compact particles with axial ratio (E) from 0.8 to 1.2 where a lower and
upper cutoff size around 0.1 and 10 are taken. Using T-matrix
code, the average simulated polarization curves are generated which can best
fit the observed polarization data at the four wavelengths =
0.365, 0.485, 0.670 and 0.684. The suitable mixing
percentage of aggregates emerging out from the present modeling corresponds to
50% BAM2 and 50% BCCA particles and silicate to organic mixing percentage
corresponds to 78% silicate and 22% organic in terms of volume. The present
model successfully reproduces the observed polarization data, especially the
negative branch, more effectively as compared to other work done in the past.
It is found that among the aggregates, the BAM2 aggregate plays a major role,
in deciding the cross-over angle and depth of negative polarization branch.Comment: 7 pages, 5 figures (accepted for publication in MNRAS on May 4, 2011
- …
