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Abstract
In most experiments on the Casimir force the comparison between measurement
data and theory was done using the concept of the root-mean-square deviation,
a procedure that has been criticized in the literature. Here we propose a special
statistical analysis which should be performed separately for the experimental
data and for the results of the theoretical computations. In so doing, the
random, systematic and total experimental errors are found as functions of
separation, taking into account the distribution laws for each error at 95%
confidence. Independently, all theoretical errors are combined to obtain the
total theoretical error at the same confidence. Finally, the confidence interval
for the differences between theoretical and experimental values is obtained
as a function of separation. This rigorous approach is applied to two recent
experiments on the Casimir effect.

PACS numbers: 12.20.Fv, 12.20.Ds, 07.05.Kf

1. Introduction

Today the Casimir effect is being actively investigated not only theoretically but also
experimentally. Historically the first measurement of the Casimir force between metals
was performed in 1958 [1] and confirmed the existence of the force with an uncertainty of
about 100%. In the following decades the experimental output was painfully low and only one
experiment with metal test bodies was made [2] (see [3] for a review). In the last few years many
measurements of the Casimir force have been performed using torsion pendulums, atomic force

0305-4470/06/216485+09$30.00 © 2006 IOP Publishing Ltd Printed in the UK 6485

http://dx.doi.org/10.1088/0305-4470/39/21/S45
http://stacks.iop.org/JPhysA/39/6485


6486 G L Klimchitskaya et al

microscopes, micromechanical torsional oscillators and other laboratory techniques [4–16].
Most authors (see [1–14]) have used the concept of the root-mean-square deviation between
experiment and theory to quantify the precision of the measurements. However, for strongly
nonlinear quantities, such as the Casimir force which changes rapidly with separation distance,
this method is not appropriate because it may lead to different results when applied in different
ranges of separations. This was emphasized in [9] although no better method was suggested.

The present paper contains the comparison analysis of the precision and accuracy in
two recent experiments [15, 16] using rigorous methods of mathematical statistics. The
distinctive feature of our approach is that both total experimental and total theoretical errors
are determined independently of one another at some accepted confidence level. Then, the
absolute error of differences between calculated and measured values of the physical quantity
is found at the same confidence as a function of separation, serving as a measure of the
precision in the comparison of experiment and theory.

2. Determination of the experimental errors

2.1. Random errors

In experiment [15], the Casimir pressure between two Au-coated parallel plates was determined
dynamically by means of a microelectromechanical torsional oscillator within the separation
region from 160 to 750 nm. In the experiment [16], the Casimir force was measured between a
Si plate and a large Au-coated sphere using an atomic force microscope within the separations
from 62.33 to 600.04 nm. In our error analysis, we use the notation �(z) which denotes either
the measured Casimir pressure P exp(z) or force F exp(z) as a function of separation z between
the test bodies.

Usually several sets of measurements, say n, are taken within one separation region
(za, zb). This is done in order to decrease the random error and to narrow the confidence
interval. In [15] n = 14, and in [16] n = 65. Each set consists of pairs [zi,�(zi)], where
1 � i � imax = (288–293) in [15] and 1 � i � imax = 3164 in [16]. All measurement data
can be represented by pairs [zij ,�(zij )], where 1 � j � n. Generally speaking, separations
with fixed i but different j may be different (this was the case in [15]). For such measurement
results, it is reasonable to divide the entire separation range (za, zb) into partial subintervals
of length 2�z, where �z is the absolute error in the measurement of separations equal to
0.6 nm and 0.8 nm in [15, 16], respectively. In so doing, each subinterval k contains a group
of mk points zij ≡ zkl, 1 � l � mk (in [15] mk ranges from 3 to 13). Inside each subinterval
all points zkl can be considered as equivalent, because within the interval of width 2�z the
value of absolute separation is distributed uniformly. The mean and the variance of the mean
of the physical quantity � for the subinterval k are defined as

�̄k = 1

mk

mk∑
l=1

�(zkl), s2
�̄k

= 1

mk(mk − 1)

mk∑
l=1

[�(zkl) − �̄k]2. (1)

If all zij = zi , i.e. the same in different sets of measurements (as in [16]), the mean and
the variance of the mean at each point zi are obtained more simply

�̄i = 1

n

n∑
j=1

�(zij ), s2
�̄i

= 1

n(n − 1)

n∑
j=1

[�(zij ) − �̄i]
2. (2)

Direct calculation shows that the mean values �̄k, �̄i are uniform, i.e. change smoothly
with the change of k, i. The variances of the mean, s�̄k

, s�̄i
, are, however, not uniform. To

smooth them, we have used a special procedure developed in mathematical statistics [17, 18].
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At each separation z0, in order to find the uniform variance of a mean, we consider not only
one subinterval containing z0, but also several neighbouring subintervals from both sides of
z0 (4 or 5 in [15]) or about 30 neighbouring points in [16]. The number of neighbouring
subintervals or points is denoted by N. Then the smoothed variance of the mean at a point z0

is given by [17, 18]

s2
�̄
(z0) = max

[
N

N∑
k=1

λ2
ks

2
�̄k

]
, (3)

where λk are the statistical weights. The maximum in equation (3) is taken over two sets of
coefficients, λk = 1/N and λk = 1

/(
ck

∑N
i=1 c−1

i

)
, where the constants ci are determined

from s2
�̄1

: s2
�̄2

: . . . : s2
�̄N

= c1 : c2 : . . . : cN . Note that max in equation (3) leads to the most
conservative result, i.e. overestimates the random error. Finally, the confidence interval at a
confidence probability β takes the form

[�̄(z0) − �rand�(z0), �̄(z0) + �rand�(z0)], (4)

where the random absolute error in the measurement of the quantity � at a separation z0 is
given by

�rand�(z0) = s�̄(z0)t(1+β)/2(min mk − 1). (5)

Here the value of tp(f ) can be found in tables for Student’s t-distribution. For example, in
the experiment [16], min mk = n = 65. Thus, for β = 0.95, we have tp(f ) = 2.00 and
�randF exp = 3.0 pN independent of z0.

The computational results for the relative random errors δrand� = �rand�/|�| in the
experiments [15, 16] at 95% confidence are shown in columns labelled (a) in table 1, as
functions of separation. As is seen from column 2 in table 1, in the experiment [15] the
relative random error of the Casimir pressure measurements is equal to 1.5% at z = 160 nm,
then it quickly decreases to 0.4% at z = 350 nm, and then increases with further increase of
separation. This is explained by the fact that the absolute random error in equation (5) takes
a maximum value at the shortest separation and monotonically decreases with the increase of
separation until z = 400 nm [15]. At larger separations �randP exp is practically constant and
the increase of δrandP exp is explained solely in terms of the decrease of the Casimir pressure
magnitude. In the experiment [16] (column 8 in table 1), the relative random error is only
0.78% at the shortest separation z = 62.33 nm, and quickly increases with separation due to
the decrease of the Casimir force.

2.2. Systematic errors

In each of the experiments [15, 16], there are several absolute systematic errors �
syst
i �(z)

and respective relative systematic errors δ
syst
i �(z) = �

syst
i �(z)/|�(z)|, where 1 � i � J .

Systematic errors are the random quantities characterized by a uniform distribution. Because
of this, the total systematic error is [19]

δsyst�(z) = min




J∑
i=1

δ
syst
i �(z), k

(J )
β

√√√√ J∑
i=1

[
δ

syst
i �(z)

]2


 , (6)

where β is the confidence probability and k
(J )
β is a tabulated coefficient [19]. The same rule is

also valid for the absolute systematic errors.
In the experiment [15], there are J = 2 main systematic errors

δ
syst
1 P exp = δR = �R

R
, δ

syst
2 P exp(z) = δ(ωr − ω0) = �ωr

|ωr − ω0| , (7)
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Table 1. Relative errors (%) in experiments [15, 16]: random errors δrandP exp, δrandF exp

(a); systematic errors δsystP exp, δsystF exp (b); total experimental errors δtotP exp, δtotF exp (c);
theoretical errors δ0P

th, δ0F
th (d); total theoretical errors δtotP th, δtotF th (e). Columns labelled

(f) contain �P /|P̄ exp| and �F /|F̄ exp| (see text).

z (nm) Experiment of [15] Experiment of [16]

(a) (b) (c) (d) (e) (f) (a) (b) (c) (d) (e) (f)

62.33 0.78 0.31 0.87 0.55 3.5 4.0
70 1.1 0.42 1.2 0.56 3.2 3.7
80 1.6 0.60 1.7 0.56 2.8 3.7
90 2.1 0.84 2.4 0.56 2.6 3.9

100 2.9 1.1 3.2 0.56 2.4 4.4
120 4.7 1.8 5.3 0.56 2.0 6.2
140 7.3 2.8 8.1 0.57 1.8 9.1
160 1.4 0.15 1.4 0.56 1.6 2.4 10 4.1 12 0.58 1.6 13
170 0.59 0.15 0.59 0.56 1.6 1.9 12 4.9 14 0.58 1.6 15
180 0.57 0.15 0.57 0.57 1.5 1.8 15 5.7 16 0.58 1.5 18
200 0.55 0.16 0.56 0.57 1.4 1.7 20 7.7 22 0.59 1.4 23
250 0.48 0.20 0.54 0.58 1.2 1.5 37 14 41 0.61 1.3 42
300 0.44 0.31 0.59 0.59 1.1 1.4 62 24 69 0.64 1.2 70
350 0.40 0.50 0.72 0.61 1.0 1.4 96 37 107 0.67 1.1 108
400 0.56 0.80 1.1 0.62 0.98 1.6
500 1.3 1.80 2.5 0.66 0.91 2.9
600 2.9 3.80 5.4 0.70 0.88 5.4

where R = (148.7 ± 0.2) µm is the sphere radius, ωr and ω0 are the resonant and natural
angular frequencies of the oscillator, respectively (the former is separation dependent).
ω0 = 2π × 702.92 Hz was determined so precisely that its error does not contribute to
the results, and the error of the resonant frequency is �ωr = 2π × 6 mHz. Using the
value k

(2)

0.95 = 1.10 and utilizing equation (6) one obtains the total systematic errors given in
column 3 (labelled (b)) in table 1.

The experiment [16] contains the following J = 4 systematic errors: �syst
1 F exp ≈ 0.82 pN

due to force calibration; �
syst
2 F exp ≈ 0.55 pN due to noise when the calibration voltage

is applied to the cantilever; �
syst
3 F exp ≈ 0.31 pN due to the instrumental sensitivity; and

�
syst
4 F exp ≈ 0.12 pN due to the restrictions on computer resolution of data. Combining these

errors using the analogue of equation (6) with k
(4)

0.95 = 1.12, we obtain �systF exp = 1.17 pN.
The respective relative errors δsystF exp = �systF exp/|F exp| are shown in column 9 in table 1.
Comparing columns labelled (b) in table 1, we conclude that in both experiments the relative
systematic error increases as the separation increases. The magnitudes of the systematic errors
are smaller in the experiment of [15].

2.3. Total experimental error

To find the total experimental error in the measurements of �(z), one should combine the
random and systematic errors obtained above which are described by a normal (or Student)
distribution and a combination of uniform distributions, respectively. To be very conservative,
we assume that the systematic error is described by a uniform distribution (other assumptions
lead to smaller total error). Different methods for combining random and systematic errors are
described in [19]. Here we use one based on the value of the quantity r(z) = �syst�(z)/s�̄(z).
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According to this method, at all z, where r(z) < 0.8, the contribution from the systematic
error is negligible and �tot�(z) = �rand�(z) at 95% confidence. If r(z) > 8 is valid, the
random error is negligible and at 95% confidence �tot�(z) = �syst�(z). In the separation
region where 0.8 � r(z) � 8, the combination of errors is performed using the rule

�tot�(z) = qβ(r)[�rand�(z) + �syst�(z)], (8)

where the coefficient qβ(r) with β = 0.95 varies between 0.71 and 0.81. Being conservative,
here we use qβ(r) = 0.8 in all calculations.

Table 1 (columns 4 and 10 labelled (c)) contains the total experimental error of the Casimir
pressure and force measurements in the experiments [15, 16], respectively. As seen in column
4 of table 1, in the experiment [15] at z = 160 nm the total experimental error is equal to 1.4%,
but in a wide separation range from 170 to 300 nm, it is practically flat and within the range
from 0.54 to 0.59%. Even at z = 600 nm it is equal to only 5.4%. In the experiment [16]
(column 10 in table 1) the smallest total experimental error of 0.87% is achieved z = 62.33 nm
and increases up to 5.3% at z = 120 nm. This is mainly due to the large contribution of the
random errors.

3. Determination of the theoretical errors

The theoretical values of �(z) (both the pressure and force) are computed using the Lifshitz
formula (see, e.g. [3]) which takes into account the effects of finite conductivity and nonzero
temperature. The Lifshitz formula contains the reflection coefficients at imaginary Matsubara
frequencies. At zero Matsubara frequency these coefficients are expressed in terms of the
Drude dielectric function (the Drude model approach [20, 21]) or in terms of the Leontovich
surface impedance (the impedance approach [22, 23]). At nonzero Matsubara frequencies both
approaches use the tabulated optical data extrapolated to low frequencies by the imaginary
part of the Drude dielectric function. In [24, 25], the reflection coefficients at all Matsubara
frequencies were expressed using the free electron plasma model (the plasma model approach).

One error in the theoretical computation arises from sample to sample variations of the
optical data for the complex index of refraction. Usually these data are not measured in
each individual experiment, but are taken from tables. In [14], it was shown that variation
of the optical data for typical samples leads to a relative theoretical error δ1�

th(z) in the
computed Casimir pressure or force that is no larger than 0.5%. Being conservative, we set
δ1�

th(z) = 0.5% at all separations. Strictly speaking, there may occur rare samples with up
to 2% deviations in the Casimir pressure or force at short separations. If this happens, the
theoretical values come into conflict with the experimental data. Such deviations must be
considered not as an error (they can only diminish the magnitudes of the pressure or force)
but as a correction. The validity of the hypothesis on the presence of such types of corrections
can be easily verified statistically.

Another theoretical error is caused by the use of the proximity force theorem [26]. (This
is the name given by the authors of [26]; some other authors, e.g. in [27], prefer to use the
name ‘proximity force approximation’ to underline the approximate character of the equality
proposed in [26].) In the experiment [15], it is applied to express the effective Casimir pressure
between two parallel plates through the derivative of the force acting between a sphere and
a plate. In the experiment [16], the basic result for the force is obtained using the proximity
force theorem. The upper limit of error introduced by this is δ2�

th(z) = z/R [3] (see also
[27, 28] where the same estimation was confirmed for the case of a massless scalar field).

Both errors δi�
th are described by a uniform distribution and in this sense can be likened

to systematic errors. They are combined by using equation (6) with J = 2 leading to the values
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δ0�
th presented in columns 5 and 11 in table 1 (labelled (d)) for the experiments [15, 16],

respectively. As is seen from these columns, the errors δ0�
th(z) depend only slightly on

separation and take similar values between 0.55% and 0.70%.
In addition to the major theoretical errors δi�

th(z), there exist other uncertainties in
calculations which are not taken into account in the Lifshitz formula. Some of them were
shown to be negligibly small (like the contributions from patch potentials, nonlocal effects
and finite sizes of the plates [14, 15]). As to the contribution from the surface roughness, it
was calculated using the atomic force microscope images of the interacting surfaces and taken
into account as a correction [14–16]. This is why these factors do not contribute to the balance
of theoretical errors.

There is one more error which can be considered together with the theoretical errors
if one is going to compare the experimental and theoretical values of �(z) [15, 16]. This
arises from the fact that z is determined experimentally with an error �z (see section 2.1),
and this error results in the additional uncertainties δ3�

th(z) in computations. Bearing in
mind the leading theoretical dependences of the pressure and force on separation, we obtain
δ3P

th(z) = 4�z/z in [15] and δ3F
th(z) = �R/R + 3�z/z in [16]. Taking into account that

the combined random quantity δ0�
th(z) may be distributed nonuniformly, we combine it with

δ3�
th(z) using equation (8) and obtain the total theoretical error δtot�th(z) at 95% confidence.

The values of δtot�th(z) are presented in columns 6 and 12 in table 1 (labelled (e)) for the
experiments [15, 16], respectively. For both experiments they monotonically decrease with
separation and take the largest values at the shortest separation. The significant increase of
the total theoretical error in columns labelled (e) compared to those labelled (d) is due to the
additional error δ3�

th(z).

4. Comparison between experiment and theory

4.1. Measure of agreement between experiment and theory

In sections 2.3 and 3, we have obtained the total experimental and theoretical errors at 95%
confidence for both the Casimir pressure and force. Now we consider the new random
quantity P th(z) − P exp(z) (or F th(z) − F exp(z)) and determine the absolute error of this
quantity, �P,F (z), at 95% confidence using the composition rule (6) with J = 2

�P (z) = min{�totP th(z) + �totP exp(z), 1.1
√

[�totP th(z)]2 + [�totP exp(z)]2} (9)

(the same equation is valid for the force). Note that in equation (9), the conservative value of
k

(2)

0.95 = 1.1 is used as for two uniform distributions (otherwise it would be smaller).
The confidence interval for the quantity P th(z) − P exp(z) at 95% confidence is given by

[−�P (z),�P (z)] and the mean values 〈P th(z)−P exp(z)〉 or 〈F th(z)−F exp(z)〉 must belong to
this interval or its analogue for the force with a 95% probability. The values of �P (z)/|P̄ exp|
and �F (z)/|F̄ exp| are given in columns 7 and 13 in table 1 (labelled (f)) for the experiments
[15, 16], respectively. They characterize the sensitivity of the experiments [15, 16] to the
differences between theory and experiment at 95% confidence. For example, in [15] theory
is in agreement with experiment at a separation z = 400 nm if |P th(z) − P̄ exp(z)| does not
exceed 1.6% of |P̄ exp(z)|.

4.2. Comparison of experiment and theory in the determination of the Casimir pressure
between Au plates in [15]

Experiment [15] is rather sensitive and can be compared with different theoretical approaches
to the calculation of the Casimir pressure. The main results are presented in table 2
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Table 2. Comparison of the experiments of [15, 16] with theory. Columns (a) contain the absolute
errors �P,F (z) of the pressure (mPa) and force (pN) differences at 95% confidence. Column
(b) contains the same quantity for the pressure at 99% confidence. Other columns contain the
mean values 〈P th(z) − P exp(z)〉 in mPa (and also 〈F th(z) − F exp(z)〉 in pN for the last column
labelled (e)) computed using four different approaches: the impedance (c) and the plasma model
(d) approach at T = 300 K; the optical data in the Lifshitz formula at T = 0 (e); the Drude model
approach at T = 300 K (f).

z (nm) Experiment of [15] Experiment of [16]

(a) (b) (c) (d) (e) (f) (a) (e)

62.33 15.2 −0.5
70 10.4 3.0
80 7.1 3.6
90 5.4 1.0

100 4.5 2.0
120 3.9 −0.15
140 3.8 0.02
170 17.2 39.8 2.01 13.0 3.87 18.8 3.7 −0.82
180 13.4 31.0 −0.74 7.54 1.24 14.4 3.7 −0.48
200 8.59 19.8 −1.21 5.3 0.63 11.0 3.7 −0.31
250 3.34 7.72 −0.31 1.3 0.93 7.09 3.7 −0.84
300 1.59 3.67 0.34 0.6 1.12 5.07 3.7 0.46
350 0.89 2.06 0.38 0.39 0.80 3.58 3.7 0.27
400 0.63 1.46 0.28 0.20 0.68 2.59
500 0.49 1.13 0.11 0.05 0.32 1.37
600 0.46 1.06 0.08 0.04 0.17 0.82
700 0.46 1.06 0.02 −0.01 0.08 0.51

where the second and third columns labelled (a), (b) contain the half-width �P (z) of the
confidence interval at 95% and 99% confidence, respectively. In columns 4–7 labelled (c),
(d), (e) and (f) the results for the mean differences 〈P th(z) − P exp(z)〉 are computed using the
impedance [15, 22] and the plasma model [15, 24, 25] approach at T = 300 K, the optical data
in the Lifshitz formula at T = 0 [3], and the Drude model approach at T = 300 K [20, 21],
respectively. To avoid confusion, recall that in column (c) the zero-frequency contribution to
the Lifshitz formula is computed using the Leontovich impedance in the region of infrared
optics. At all other Matsubara frequencies the impedance is obtained using the tabulated
optical data. Comparing columns 4–6 and columns 2,3, we conclude that the impedance
approach, the plasma model approach and the Lifshitz formula at T = 0 are consistent with
the measurement data. At the same time, by comparing columns 2, 3 with column 7 we
find that the Drude model approach is excluded by experiment at 95% confidence within the
separation range from 170 to 700 nm, and at 99% confidence from 300 to 500 nm. The physical
reasons for the failure of the Drude model approach and the advantages of the Leontovich
impedance are discussed in [22, 23, 29].

4.3. Comparison of experiment and theory in measuring the Casimir force between an Au
sphere and a Si plate in [16]

Experiment [16] is the first demonstration of the Casimir force between a metal and a
semiconductor performed at shorter separations than in experiment [15]. For this reason
it cannot be used to discriminate among different theories. In column 8, in table 2 labelled (a)
the values of �F (z) for the force at 95% confidence are given. Column 9 in table 2 labelled
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(e) contains the values of 〈F th(z) − F exp(z)〉 computed using the Lifshitz formula at T = 0
and tabulated optical data for Au and Si. The comparison of these columns shows that the
theory at T = 0 is in a very good agreement with experiment.

5. Conclusions

From the above, several conclusions can be reached:

• A new method for data processing and comparing theory with experiment for the Casimir
effect has been presented based on rigorous results of mathematical statistics with no
recourse to the previously used root-mean-square deviation.

• The distinguishing feature of this method is the independent determination of the total
experimental and theoretical errors and of the confidence interval for differences between
calculated and measured values at a chosen confidence probability.

• The developed method is conservative and guarantees against underestimation of errors
and uncertainties. It was applied to two recent experiments measuring the Casimir pressure
and force in different configurations.

• We have demonstrated that the approaches based on the vanishing contribution of the
transverse electric mode at zero frequency (e.g., the Drude model approach) are excluded
by experiment at 99% confidence, whereas the three traditional approaches to the thermal
Casimir force are consistent with experiment.
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