133 research outputs found

    Testing the GRACE follow-on triple mirror assembly

    No full text
    We report on the successful testing of the GRACE follow-on triple mirror assembly (TMA) prototype. This component serves to route the laser beam in a proposed follow-on mission to the Gravity Recovery and Climate Explorer (GRACE) mission, containing an optical instrument for space-based distance measurement between satellites. As part of this, the TMA has to meet a set of stringent requirements on both the optical and mechanical properties. The purpose of the TMA prototype testing is to establish the feasibility of the design, materials choice and fabrication techniques. Here we report on co-alignment testing of this device to the arc second (5 Όrad) level and thermal alignment stability testing to 1 Ό rad {{K}-1}

    Quaternary Ammonium Silane-Functionalized, Methacrylate Resin Composition With Antimicrobial Activities and Self-Repair Potential

    Get PDF
    The design of antimicrobial polymers to address healthcare issues and minimize environmental problems is an important endeavor with both fundamental and practical implications. Quaternary ammonium silane-functionalized methacrylate (QAMS) represents an example of antimicrobial macromonomers synthesized by a sol–gel chemical route; these compounds possess flexible Si–O–Si bonds. In present work, a partially hydrolyzed QAMS co-polymerized with 2,2-[4(2-hydroxy 3-methacryloxypropoxy)-phenyl]propane is introduced. This methacrylate resin was shown to possess desirable mechanical properties with both a high degree of conversion and minimal polymerization shrinkage. The kill-on-contact microbiocidal activities of this resin were demonstrated using single-species biofilms of Streptococcus mutans (ATCC 36558), Actinomyces naeslundii (ATCC 12104) and Candida albicans (ATCC 90028). Improved mechanical properties after hydration provided the proof-of-concept that QAMS-incorporated resin exhibits self-repair potential via water-induced condensation of organic modified silicate (ormosil) phases within the polymerized resin matrix

    Pseudo-acetylation of multiple sites on human Tau proteins alters Tau phosphorylation and microtubule binding, and ameliorates amyloid beta toxicity

    Get PDF
    Tau is a microtubule-associated protein that is highly soluble and natively unfolded. Its dysfunction is involved in the pathogenesis of several neurodegenerative disorders including Alzheimer's disease (AD), where it aggregates within neurons. Deciphering the physiological and pathogenic roles of human Tau (hTau) is crucial to further understand the mechanisms leading to its dysfunction in vivo. We have used a knock-out/knock-in strategy in Drosophila to generate a strain with hTau inserted into the endogenous fly tau locus and expressed under the control of the endogenous fly tau promoter, thus avoiding potential toxicity due to genetic over-expression. hTau knock-in (KI) proteins were expressed at normal, endogenous levels, bound to fly microtubules and were post-translationally modified, hence displaying physiological properties. We used this new model to investigate the effects of acetylation on hTau toxicity in vivo. The simultaneous pseudo-acetylation of hTau at lysines 163, 280, 281 and 369 drastically decreased hTau phosphorylation and significantly reduced its binding to microtubules in vivo. These molecular alterations were associated with ameliorated amyloid beta toxicity. Our results indicate acetylation of hTau on multiple sites regulates its biology and ameliorates amyloid beta toxicity in vivo

    Uniformity of rotavirus strain nomenclature proposed by the Rotavirus Classification Working Group (RCWG)

    Get PDF
    In April 2008, a nucleotide-sequence-based, complete genome classification system was developed for group A rotaviruses (RVs). This system assigns a specific genotype to each of the 11 genome segments of a particular RV strain according to established nucleotide percent cutoff values. Using this approach, the genome of individual RV strains are given the complete descriptor of Gx-P[x]-Ix-Rx-Cx-Mx-Ax-Nx-Tx-Ex-Hx. The Rotavirus Classification Working Group (RCWG) was formed by scientists in the field to maintain, evaluate and develop the RV genotype classification system, in particular to aid in the designation of new genotypes. Since its conception, the group has ratified 51 new genotypes: as of April 2011, new genotypes for VP7 (G20-G27), VP4 (P[28]-P[35]), VP6 (I12-I16), VP1 (R5-R9), VP2 (C6-C9), VP3 (M7-M8), NSP1 (A15-A16), NSP2 (N6-N9), NSP3 (T8-T12), NSP4 (E12-E14) and NSP5/6 (H7-H11) have been defined for RV strains recovered from humans, cows, pigs, horses, mice, South American camelids (guanaco), chickens, turkeys, pheasants, bats and a sugar glider. With increasing numbers of complete RV genome sequences becoming available, a standardized RV strain nomenclature system is needed, and the RCWG proposes that individual RV strains are named as follows: RV group/species of origin/country of identification/common name/year of identification/G- and P-type. In collaboration with the National Center for Biotechnology Information (NCBI), the RCWG is also working on developing a RV-specific resource for the deposition of nucleotide sequences. This resource will provide useful information regarding RV strains, including, but not limited to, the individual gene genotypes and epidemiological and clinical information. Together, the proposed nomenclature system and the NCBI RV resource will offer highly useful tools for investigators to search for, retrieve, and analyze the ever-growing volume of RV genomic data.Fil: Matthijnssens, Jelle. Katholikie Universiteit Leuven; BélgicaFil: Ciarlet, Max. Novartis Vaccines & Diagnostics; Estados UnidosFil: McDonald, Sarah M.. National Institute Of Allegry & Infectious Diseases (niaid) ; National Institutes Of Health;Fil: Attoui, Houssam. Animal Health Trust.; Reino UnidoFil: Bånyai, Krisztiån. Hungarian Academy of Sciences; HungríaFil: Brister, J. Rodney. National Library Of Medicine; Estados UnidosFil: Buesa, Javier. Universidad de Valencia; EspañaFil: Esona, Mathew D.. Centers for Disease Control and Prevention; Estados UnidosFil: Estes, Mary K.. Baylor College of Medicine; Estados UnidosFil: Gentsch, Jon R.. Centers for Disease Control and Prevention; Estados UnidosFil: Iturriza Gómara, Miren. Health Protection Agency; Reino UnidoFil: Johne, Reimar. Federal Institute for Risk Assessment; AlemaniaFil: Kirkwood, Carl D.. Royal Children's Hospital; AustraliaFil: Martella, Vito. Università degli Studi di Bari; ItaliaFil: Mertens, Peter P. C.. Animal Health Trust.; Reino UnidoFil: Nakagomi, Osamu. Nagasaki University; JapónFil: Parreño, Gladys Viviana. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Virología; ArgentinaFil: Rahman, Mustafizur. International Centre For Diarrhoeal Disease Research; BangladeshFil: Ruggeri, Franco M.. Istituto Superiore Di Sanita; ItaliaFil: Saif, Linda J.. Ohio State University; Estados UnidosFil: Santos, Norma. Universidade Federal do Rio de Janeiro; BrasilFil: Steyer, Andrej. University of Ljubljan; EsloveniaFil: Taniguchi, Koki. Fujita Health University School of Medicine; JapónFil: Patton, John T.. National Institute Of Allegry & Infectious Diseases (niaid) ; National Institutes Of Health;Fil: Desselberger, Ulrich. University of Cambridge; Estados UnidosFil: van Ranst, Marc. Katholikie Universiteit Leuven; Bélgic

    The Effect of DNA-Dependent Protein Kinase on Adeno-Associated Virus Replication

    Get PDF
    BACKGROUND: DNA-dependent protein kinase (DNA-PK) is a DNA repair enzyme and plays an important role in determining the molecular fate of the rAAV genome. However, the effect this cellular enzyme on rAAV DNA replication remains elusive. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, we characterized the roles of DNA-PK on recombinant adeno-associated virus DNA replication. Inhibition of DNA-PK by a DNA-PK inhibitor or siRNA targeting DNA-PKcs significantly decreased replication of AAV in MO59K and 293 cells. Southern blot analysis showed that replicated rAAV DNA formed head-to-head or tail-to-tail junctions. The head-to-tail junction was low or undetectable suggesting AAV-ITR self-priming is the major mechanism for rAAV DNA replication. In an in vitro replication assay, anti-Ku80 antibody strongly inhibited rAAV replication, while anti-Ku70 antibody moderately decreased rAAV replication. Similarly, when Ku heterodimer (Ku70/80) was depleted, less replicated rAAV DNA were detected. Finally, we showed that AAV-ITRs directly interacted with Ku proteins. CONCLUSION/SIGNIFICANCE: Collectively, our results showed that that DNA-PK enhances rAAV replication through the interaction of Ku proteins and AAV-ITRs

    Nomenclature- and Database-Compatible Names for the Two Ebola Virus Variants that Emerged in Guinea and the Democratic Republic of the Congo in 2014

    Get PDF
    In 2014, Ebola virus (EBOV) was identified as the etiological agent of a large and still expanding outbreak of Ebola virus disease (EVD) in West Africa and a much more confined EVD outbreak in Middle Africa. Epidemiological and evolutionary analyses confirmed that all cases of both outbreaks are connected to a single introduction each of EBOV into human populations and that both outbreaks are not directly connected. Coding-complete genomic sequence analyses of isolates revealed that the two outbreaks were caused by two novel EBOV variants, and initial clinical observations suggest that neither of them should be considered strains. Here we present consensus decisions on naming for both variants (West Africa: “Makona”, Middle Africa: “Lomela”) and provide database-compatible full, shortened, and abbreviated names that are in line with recently established filovirus sub-species nomenclatures

    Filovirus RefSeq Entries: Evaluation and Selection of Filovirus Type Variants, Type Sequences, and Names

    Get PDF
    Sequence determination of complete or coding-complete genomes of viruses is becoming common practice for supporting the work of epidemiologists, ecologists, virologists, and taxonomists. Sequencing duration and costs are rapidly decreasing, sequencing hardware is under modification for use by non-experts, and software is constantly being improved to simplify sequence data management and analysis. Thus, analysis of virus disease outbreaks on the molecular level is now feasible, including characterization of the evolution of individual virus populations in single patients over time. The increasing accumulation of sequencing data creates a management problem for the curators of commonly used sequence databases and an entry retrieval problem for end users. Therefore, utilizing the data to their fullest potential will require setting nomenclature and annotation standards for virus isolates and associated genomic sequences. The National Center for Biotechnology Information’s (NCBI’s) RefSeq is a non-redundant, curated database for reference (or type) nucleotide sequence records that supplies source data to numerous other databases. Building on recently proposed templates for filovirus variant naming [ ()////-], we report consensus decisions from a majority of past and currently active filovirus experts on the eight filovirus type variants and isolates to be represented in RefSeq, their final designations, and their associated sequences
    • 

    corecore