30 research outputs found

    Quantifying bacterial evolution in the wild : A birthday problem for Campylobacter lineages

    Get PDF
    Measuring molecular evolution in bacteria typically requires estimation of the rate at which nucleotide changes accumulate in strains sampled at different times that share a common ancestor. This approach has been useful for dating ecological and evolutionary events that coincide with the emergence of important lineages, such as outbreak strains and obligate human pathogens. However, in multi-host (niche) transmission scenarios, where the pathogen is essentially an opportunistic environmental organism, sampling is often sporadic and rarely reflects the overall population, particularly when concentrated on clinical isolates. This means that approaches that assume recent common ancestry are not applicable. Here we present a new approach to estimate the molecular clock rate in Campylobacter that draws on the popular probability conundrum known as the 'birthday problem'. Using large genomic datasets and comparative genomic approaches, we use isolate pairs that share recent common ancestry to estimate the rate of nucleotide change for the population. Identifying synonymous and non-synonymous nucleotide changes, both within and outside of recombined regions of the genome, we quantify clock-like diversification to estimate synonymous rates of nucleotide change for the common pathogenic bacteria Campylobacter colt (2.4 x 10(-6) s/s/y) and Campylobacter jejuni (3.4 x 10(-6) s/s/y). Finally, using estimated total rates of nucleotide change, we infer the number of effective lineages within the sample time frame-analogous to a shared birthday-and assess the rate of turnover of lineages in our sample set over short evolutionary timescales. This provides a generalizable approach to calibrating rates in populations of environmental bacteria and shows that multiple lineages are maintained, implying that large-scale clonal sweeps may take hundreds of years or more in these species.Peer reviewe

    Rapid evolution of distinct Helicobacter pylori subpopulations in the Americas

    Get PDF
    For the last 500 years, the Americas have been a melting pot both for genetically diverse humans and for the pathogenic and commensal organisms associated with them. One such organism is the stomach-dwelling bacterium Helicobacter pylori, which is highly prevalent in Latin America where it is a major current public health challenge because of its strong association with gastric cancer. By analyzing the genome sequence of H. pylori isolated in North, Central and South America, we found evidence for admixture between H. pylori of European and African origin throughout the Americas, without substantial input from pre-Columbian (hspAmerind) bacteria. In the US, strains of African and European origin have remained genetically distinct, while in Colombia and Nicaragua, bottlenecks and rampant genetic exchange amongst isolates have led to the formation of national gene pools. We found three outer membrane proteins with atypical levels of Asian ancestry in American strains, as well as alleles that were nearly fixed specifically in South American isolates, suggesting a role for the ethnic makeup of hosts in the colonization of incoming strains. Our results show that new H. pylori subpopulations can rapidly arise, spread and adapt during times of demographic flux, and suggest that differences in transmission ecology between high and low prevalence areas may substantially affect the composition of bacterial populations

    A 500-year tale of co-evolution, adaptation, and virulence: Helicobacter pylori in the Americas

    Get PDF
    Helicobacter pylori is a common component of the human stomach microbiota, possibly dating back to the speciation of Homo sapiens. A history of pathogen evolution in allopatry has led to the development of genetically distinct H. pylori subpopulations, associated with different human populations, and more recent admixture among H. pylori subpopulations can provide information about human migrations. However, little is known about the degree to which some H. pylori genes are conserved in the face of admixture, potentially indicating host adaptation, or how virulence genes spread among different populations. We analyzed H. pylori genomes from 14 countries in the Americas, strains from the Iberian Peninsula, and public genomes from Europe, Africa, and Asia, to investigate how admixture varies across different regions and gene families. Whole-genome analyses of 723 H. pylori strains from around the world showed evidence of frequent admixture in the American strains with a complex mosaic of contributions from H. pylori populations originating in the Americas as well as other continents. Despite the complex admixture, distinctive genomic fingerprints were identified for each region, revealing novel American H. pylori subpopulations. A pan-genome Fst analysis showed that variation in virulence genes had the strongest fixation in America, compared with non-American populations, and that much of the variation constituted non-synonymous substitutions in functional domains. Network analyses suggest that these virulence genes have followed unique evolutionary paths in the American populations, spreading into different genetic backgrounds, potentially contributing to the high risk of gastric cancer in the region.Fil: Muñoz Ramirez, Zilia Y.. INSTITUTO POLITÉCNICO NACIONAL (IPN);Fil: Pascoe, Ben. University of Bath; Reino UnidoFil: Mendez Tenorio, Alfonso. INSTITUTO POLITÉCNICO NACIONAL (IPN);Fil: Mourkas, Evangelos. University of Bath; Reino UnidoFil: Sandoval Motta, Santiago. Consejo Nacional de Ciencia y Tecnología; MéxicoFil: Perez Perez, Guillermo. New York University Langone Medical Center; Estados UnidosFil: Morgan, Douglas R.. University of Alabama at Birmingahm; Estados UnidosFil: Dominguez, Ricardo Leonel. Western Honduras Gastric Cancer Prevention Initiative Hospital de Occidente Santa Rosa de Copan; HondurasFil: Ortiz Princz, Diana. No especifíca;Fil: Cavazza, Maria Eugenia. No especifíca;Fil: Rocha, Gifone. Universidade Federal de Minas Gerais; BrasilFil: Queiroz, Dulcienne. Universidade Federal de Minas Gerais; BrasilFil: Catalano, Mariana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones en Microbiología y Parasitología Médica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en Microbiología y Parasitología Médica; ArgentinaFil: Zerbetto de Palma, Gerardo Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Físico-Química Biológicas; ArgentinaFil: Goldman, Cinthia Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica; ArgentinaFil: Venegas, Alejandro. Universidad Diego Portales; ChileFil: Alarcon, Teresa. Universidad Autónoma de Madrid; EspañaFil: Oleastro, Monica. Universidade Nova de Lisboa; PortugalFil: Vale, Filipa F.. Universidade Nova de Lisboa; PortugalFil: Goodman, Karen J.. University of Alberta; CanadáFil: Torres, Roberto C.. Instituto Mexicano del Seguro Social; MéxicoFil: Berthenet, Elvire. Swansea University Medical School; Reino UnidoFil: Hitchings, Matthew D.. Swansea University Medical School; Reino UnidoFil: Blaser, Martin J.. Rutgers University; Estados UnidosFil: Sheppard, Samuel K.. University of Bath; Reino UnidoFil: Thorell, Kaisa. University of Gothenburg; SueciaFil: Torres, Javier. Instituto Mexicano del Seguro Social; Méxic

    Quantifying bacterial evolution in the wild: A birthday problem for Campylobacter lineages.

    No full text
    Measuring molecular evolution in bacteria typically requires estimation of the rate at which nucleotide changes accumulate in strains sampled at different times that share a common ancestor. This approach has been useful for dating ecological and evolutionary events that coincide with the emergence of important lineages, such as outbreak strains and obligate human pathogens. However, in multi-host (niche) transmission scenarios, where the pathogen is essentially an opportunistic environmental organism, sampling is often sporadic and rarely reflects the overall population, particularly when concentrated on clinical isolates. This means that approaches that assume recent common ancestry are not applicable. Here we present a new approach to estimate the molecular clock rate in Campylobacter that draws on the popular probability conundrum known as the 'birthday problem'. Using large genomic datasets and comparative genomic approaches, we use isolate pairs that share recent common ancestry to estimate the rate of nucleotide change for the population. Identifying synonymous and non-synonymous nucleotide changes, both within and outside of recombined regions of the genome, we quantify clock-like diversification to estimate synonymous rates of nucleotide change for the common pathogenic bacteria Campylobacter coli (2.4 x 10-6 s/s/y) and Campylobacter jejuni (3.4 x 10-6 s/s/y). Finally, using estimated total rates of nucleotide change, we infer the number of effective lineages within the sample time frame-analogous to a shared birthday-and assess the rate of turnover of lineages in our sample set over short evolutionary timescales. This provides a generalizable approach to calibrating rates in populations of environmental bacteria and shows that multiple lineages are maintained, implying that large-scale clonal sweeps may take hundreds of years or more in these species

    Correction: Rapid evolution of distinct Helicobacter pylori subpopulations in the Americas

    No full text
    The following information is missing from the Funding section: This work was supported by the Grants-in-Aid for Scientific Research from the MEXT (Ministry of Education, Science, Sports and Culture) (15K21554 to KY), a Wellcome Trust Career Development fellowship and funding under the MRC-CLIMB initiative (to SKS and DF), and a United States National Institutes of Health Research grant R21CA182822 (to IK). DJL is funded by Wellcome Trust and Royal Society grant WT104125AIA. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Referenc

    HSP110 promotes colorectal cancer growth through STAT3 activation.

    No full text
    IF 7.932International audienceHeat shock protein 110 (HSP110) is induced by different stresses and, through its anti-apoptotic and chaperoning properties, helps cells survive these adverse situations. In colon cancers, HSP110 is abnormally abundant. We have recently shown that colorectal cancer patients with microsatellite instability (MSI) had an improved response to chemotherapy because they harbor an HSP110-inactivating mutation (HSP110DE9). In this work, we used patient biopsies, human colorectal cancer cells grown in vitro and in vivo (xenografts), and intestinal crypts to demonstrate that HSP110 is also involved in colon cancer growth. We showed that HSP110 induces colon cancer cell proliferation and that this effect is associated with STAT3 activation, specifically an increase in STAT3 phosphorylation, nuclear translocation and transcription factor activity. STAT3 inhibition blocks the proliferative effect of HSP110. From a molecular standpoint, we demonstrated that HSP110 directly binds to STAT3, thereby facilitating its phosphorylation by JAK2. Finally, we showed a correlation between HSP110 expression and STAT3 phosphorylation in colon cancer patient samples. Thus, the expression of HSP110 in colon cancer contributes to STAT3-dependent tumor growth and the frequent inactivating mutation of this chaperone is probably an important event underlying the improved prognosis in colon cancer displaying MSI

    HSP110 promotes colorectal cancer growth through STAT3 activation

    Full text link
    Heat shock protein 110 (HSP110) is induced by different stresses and, through its anti-apoptotic and chaperoning properties, helps cells survive these adverse situations. In colon cancers, HSP110 is abnormally abundant. We have recently shown that colorectal cancer patients with microsatellite instability (MSI) had an improved response to chemotherapy because they harbor an HSP110inactivating mutation (HSP110DE9). In this work, we used patient biopsies, human colorectal cancer cells grown in vitro and in vivo (xenografts), and intestinal crypts to demonstrate that HSP110 is also involved in colon cancer growth. We showed that HSP110 induces colon cancer cell proliferation and that this effect is associated with STAT3 activation, specifically an increase in STAT3 phosphorylation, nuclear translocation and transcription factor activity. STAT3 inhibition blocks the proliferative effect of HSP110. From a molecular standpoint, we demonstrated that HSP110 directly binds to STAT3, thereby facilitating its phosphorylation by JAK2. Finally, we showed a correlation between HSP110 expression and STAT3 phosphorylation in colon cancer patient samples. Thus, the expression of HSP110 in colon cancer contributes to STAT3-dependent tumor growth and the frequent inactivating mutation of this chaperone is probably an important event underlying the improved prognosis in colon cancer displaying MSI

    Data from: Rapid evolution of distinct Helicobacter pylori subpopulations in the Americas

    No full text
    For the last 500 years, the Americas have been a melting pot both for genetically diverse humans and for the pathogenic and commensal organisms associated with them. One such organism is the stomach-dwelling bacterium Helicobacter pylori, which is highly prevalent in Latin America where it is a major current public health challenge because of its strong association with gastric cancer. By analyzing the genome sequence of H. pylori isolated in North, Central and South America, we found evidence for admixture between H. pylori of European and African origin throughout the Americas, without substantial input from pre-Columbian (hspAmerind) bacteria. In the US, strains of African and European origin have remained genetically distinct, while in Colombia and Nicaragua, bottlenecks and rampant genetic exchange amongst isolates have led to the formation of national gene pools. We found three outer membrane proteins with atypical levels of Asian ancestry in American strains, as well as alleles that were nearly fixed specifically in South American isolates, suggesting a role for the ethnic makeup of hosts in the colonization of incoming strains. Our results show that new H. pylori subpopulations can rapidly arise, spread and adapt during times of demographic flux, and suggest that differences in transmission ecology between high and low prevalence areas may substantially affect the composition of bacterial populations

    Data from: Rapid evolution of distinct Helicobacter pylori subpopulations in the Americas

    No full text
    For the last 500 years, the Americas have been a melting pot both for genetically diverse humans and for the pathogenic and commensal organisms associated with them. One such organism is the stomach-dwelling bacterium Helicobacter pylori, which is highly prevalent in Latin America where it is a major current public health challenge because of its strong association with gastric cancer. By analyzing the genome sequence of H. pylori isolated in North, Central and South America, we found evidence for admixture between H. pylori of European and African origin throughout the Americas, without substantial input from pre-Columbian (hspAmerind) bacteria. In the US, strains of African and European origin have remained genetically distinct, while in Colombia and Nicaragua, bottlenecks and rampant genetic exchange amongst isolates have led to the formation of national gene pools. We found three outer membrane proteins with atypical levels of Asian ancestry in American strains, as well as alleles that were nearly fixed specifically in South American isolates, suggesting a role for the ethnic makeup of hosts in the colonization of incoming strains. Our results show that new H. pylori subpopulations can rapidly arise, spread and adapt during times of demographic flux, and suggest that differences in transmission ecology between high and low prevalence areas may substantially affect the composition of bacterial populations.,BIGSdb gene-by-gene alignment, fasta formatThis is a fasta format gene-by-gene alignment of all the genomes included in the study to all loci in the H. pylori reference genome 26695. The loci are subsequently concatenated into one entry per genome.BIGSdb_gene-by-gene_alignment.fasta.gzBIGSdb gene-by-gene alignment, xmfa formatThis is an extended fasta (xmfa) format gene-by-gene alignment of all the genomes included in the study to all loci in the H. pylori reference genome 26695.BIGSdb_gene-by-gene_alignment.xmfa.gzGzipped tar archive of contig filesThis tarball contains all 402 draft- and complete genomes compared within this study.contigs.tar.gz
    corecore