160 research outputs found

    Impacts of anthropogenic and environmental factors on the occurrence of shallow landslides in an alpine catchment (Urseren Valley, Switzerland)

    Get PDF
    Changes in climate and land use pose a risk to stability of alpine soils, but the direction and magnitude of the impact is still discussed controversially with respect to the various alpine regions. In this study, we explicitly consider the influence of dynamic human-induced changes on the occurrence of landslides in addition to natural factors. Our hypothesis was that if changes in land use and climate have a significant influence on the occurrence of landslides we would see a trend in the incidence of landslides over time. We chose the Urseren Valley in the Central Swiss Alps as investigation site because the valley is dramatically affected by landslides and the land use history is well documented. Maps of several environmental factors were used to analyse the spatial landslide pattern. In order to explain the causation of the temporal variation, time-series (45 years) of precipitation characteristics, cattle stocking and pasture maps were compared to a series of seven landslide investigation maps between 1959 and 2004. We found that the area affected by landslides increased by 92% from 1959 to 2004. Even though catchment characteristics like geology and slope largely explain the spatial variation in landslide susceptibility (68%), this cannot explain the temporal trend in landslide activity. The increase in stocking numbers and the increased intensity of torrential rain events had most likely an influence on landslide incidence. In addition, our data and interviews with farmers pointed to the importance of management practice

    Soil loss by wind (SoLoWind): a new GIS-based model to identify risk areas

    Get PDF
    The focus of wind erosion studies in Germany is located in the Northern and Eastern parts of the country, where wind erosion is a major soil threat and environmental concern. One of the most susceptible regions not only within Germany, but also within Europe (1, 2) is Western Saxony even though no high resolution erosion risk map exists for that region yet. A new wind erosion model for modeling soil loss by wind called SoLoWind was developed and tested for Western Saxony (3). SoLoWind extends the existing DIN model (DIN standard 19706) applied by the public authorities in Germany to a multidirectional model with new causal factors. The new factors are combined by fuzzy logic with the original DIN factors into four modules. The “Natural Wind Erosions Susceptibility” (SUS) module determines the regional soil erodibility with respect to soil texture, soil organic content, soil moisture and wind speeds. A “Soil Cover” (COV) module distinguishes between bare soil and covered soil in satellite images. Furthermore, the modules “Mean Field Length” (MFL) and “Mean Protection Zones” (MPZ) are parameters for the wind erosions avalanching effect and sheltering of windbreaks. Both modules are weighted according to the frequency of wind directions. The application showed that about one-third of all arable land in Western Saxony have either high (26.9%) or very high soil erosion risk (3.6%) by wind. As such, wind erosion is a serious land degradation threat for the region as it is in the adjacent federal states. According to the modeled off-site effects of wind erosion, a potential danger of reduced visibility by windblown dust to sections of the highway A72 could clearly be identified which calls for immediate protection measures. The transparency, adaptability, and user-friendliness of the model suggest that SoLoWind might serve as a planning tool for soil conservation strategies not merely in Western Saxony, but also in other regions

    239 + 240Pu from “contaminant” to soil erosion tracer: Where do we stand?

    Get PDF
    As soil erosion is the major threat to one of the most essential resources of humankind, methods to quantify soil redistribution are crucial for agro-environmental assessment as well as for optimisation of soil conservation practices. The use of fallout radionuclides (FRN) as soil redistribution tracers is, next to modelling, currently the most promising approach for assessing soil erosion. This review aims to evaluate the suitability of Plutonium (Pu) in general and the 239+240Pu isotopes in particular as soil redistribution tracers. It provides information on its origin, distribution and behaviour in soils and in the environment. Analytical methods, their recent advances as well as limitations, are discussed. To establish the current state of knowledge and to deepen our understanding, particular attention is given to the main existing achievements and findings based on using 239+240Pu as soil erosion tracer in agroecosystems. We further discuss similarities and differences to other more mature FRN techniques such as the 137Cs based approach which has been until now the most widely used method. We conclude that 239+240Pu has the potential to become the next generation of soil redistribution tracer compared to the more mature FRN techniques mostly due to (i) its long half-life guaranteeing its long-term availability in the environment, (ii) its analytical advantage in terms of measurement precision and measurement time and (iii) its greater homogeneity at reference sites due to its main origin from past atmospheric nuclear weapon tests. In identifying some key future research opportunities and needs, we hope to refine the efficiency of this promising agro-environmental tracer for effective soil redistribution studies under future climate and land use change

    Mercury evasion from a boreal peatland determined with advanced REA and chamber methods

    Get PDF
    Gasförmiges, elementares Quecksilber (Hg^0) ist die dominierende Form von Hg in der AtmosphĂ€re und steht in stĂ€ndigem Austausch mit Böden und WasseroberflĂ€chen. In borealen Mooren ist dieser Land-AtmosphĂ€ren-Austausch von Hg^0 von besonderer Relevanz. - in solch anoxischen Ökosystem bildet sich das hochtoxische Methylquecksilber (MeHg) - , da sich verĂ€ndernde Depositions- und Emissionsraten den Hg-Pool im Boden beeinflussen. Um natĂŒrliche influssfaktoren zu bestimmen, welche die Reduktion von Hg(II) zu Hg^0 und damit die Ausgasung fördern, haben wir dynamische Durchflusskammern (DFCs) verwendet. Der Effekt von erhöhter Schwefel- und Stickstoffdeposition sowie verĂ€nderten Temperatur- und Feuchtebedingungen auf den Hg^0-Fluss wurden untersucht und typische Flussraten fĂŒr unser Untersuchungsgebiet quantifiziert. Das boreale Moor liegt etwa 10 Kilometer westlich von Vindeln, in der Provinz VĂ€sterbotten in Schweden. Um den ganzjĂ€hrigen In- und Output von Hg^0 ĂŒber die AtmosphĂ€re zu quantifizieren, entwickelten wir ein neues Relaxed Eddy Accumulation (REA) System mit zwei LufteinlĂ€ssen, nur einem Detektor und einem ausgefeilten, automatischen Kalibrationsmodul. WĂ€hrend den Hg-Messungen wurden meteorologische Parameter, im Wasser gelöstes Hg^0(DGM) und die Gesamtdeposition von Hg gemessen. Letztere wĂ€hrend der Vegetationsperiode 2014. Das Gesamt-Hg im Boden und im Abflussbereich des Moores wurde vorgĂ€ngig bestimmt und trĂ€gt zum besseren VerstĂ€ndnis des Hg-Kreislaufs bei. Hohe Schwefeldepositionen, wie sie in den 80er-Jahren in Schweden ĂŒblich waren, fĂŒhrten zu einer Hemmung von Hg-Emissionen. Dies ist mit einer initialen Ausgasung von Hg zu Beginn des Versuches oder mit dem Binden von Hg an Schwefelgruppen und anschliessendem Abtransport im OberflĂ€chenwasser zu erklĂ€ren. DFC-Messungen im Juli 2014 wurden wĂ€hrend Strahlungstagen durchgefĂŒhrt und zeigten einen deutlichen Tagesgang und eine starke lineare AbhĂ€ngigkeit von der Temperatur innerhalb und ausserhalb der Kammern. Erste Auswertungen der REA-Daten zeigten eine Spannweite der Monatsmittelwerte zwischen -6 ng m^-2 h^-1 im November 2013 und 15 ng m^-2 h^-1 im Juni 2014. Hg^0-Emissionen dominierten wĂ€hrend des Sommers und Hg^0-Deposition von SpĂ€therbst bis FrĂŒhling. Als erste Forschungsgruppe gelang es uns, den Hg^0-Fluss ĂŒber einem borealen Moor wĂ€hrend eines ganzen Jahres zu messen und dabei REA erfolgreich anzuwenden. Des Weiteren konnten wir mit DFC-Messungen Faktoren identifizieren, welche Hg^0-Emissionen hemmen oder begĂŒnstigen. Die Ausgasung von Hg^0 in die AtmosphĂ€re scheint die Menge im Abfluss deutlich zu ĂŒbersteigen und deutet darauf hin, dass das boreale Moor heute nicht nur eine Quelle fĂŒr MeHg, sondern auch fĂŒr Gesamt-Hg ist

    Soil erosion in an avalanche release site (Valle d'Aosta: Italy): towards a winter factor for RUSLE in the Alps

    Get PDF
    Soil erosion in Alpine areas is mainly related to extreme topographic and weather conditions. Although different methods of assessing soil erosion exist, the knowledge of erosive forces of the snow cover needs more investigation in order to allow soil erosion modeling in areas where the snow lays on the ground for several months. This study aims to assess whether the RUSLE (Revised Universal Soil Loss Equation) empirical prediction model, which gives an estimation of water erosion in t ha yr<sup>−1</sup> obtained from a combination of five factors (rainfall erosivity, soil erodibility, topography, soil cover, protection practices) can be applied to mountain areas by introducing a winter factor (<i>W</i>), which should account for the soil erosion occurring in winter time by the snow cover. The <i>W</i> factor is calculated from the ratio of Ceasium-137 (<sup>137</sup>Cs) to RUSLE erosion rates. Ceasium-137 is another possible way of assessing soil erosion rates in the field. In contrast to RUSLE, it not only provides water-induced erosion but integrates all erosion agents involved. Thus, we hypothesize that in mountain areas the difference between the two approaches is related to the soil erosion by snow. In this study we compared <sup>137</sup>Cs-based measurement of soil redistribution and soil loss estimated with RUSLE in a mountain slope affected by avalanches, in order to assess the relative importance of winter erosion processes such as snow gliding and full-depth avalanches. Three subareas were considered: DS, avalanche defense structures, RA, release area, and TA, track area, characterized by different prevalent winter processes. The RUSLE estimates and the <sup>137</sup>Cs redistribution gave significantly different results. The resulting ranges of <i>W</i> evidenced relevant differences in the role of winter erosion in the considered subareas, and the application of an avalanche simulation model corroborated these findings. Thus, the higher rates obtained with the <sup>137</sup>Cs method confirmed the relevant role of winter soil erosion. Despite the limited sample size (11 points), the inclusion of a <i>W</i> factor in RUSLE seems promising for the improvement of soil erosion estimates in Alpine environments affected by snow movements

    Comparative study of elemental mercury flux measurement techniques over a Fennoscandian boreal peatland

    Get PDF
    Quantitative estimates of the land-atmosphere exchange of gaseous elemental mercury (GEM) are biased by the measurement technique employed, because no standard method or scale in space and time are agreed upon. Here we present concurrent GEM exchange measurements over a boreal peatland using a novel relaxed eddy accumulation (REA) system, a rectangular Teflon (R) dynamic flux chamber (DFC) and a DFC designed according to aerodynamic considerations (Aero-DFC). During four consecutive days the DFCs were placed alternately on two measurement plots in every cardinal direction around the REA sampling mast. Spatial heterogeneity in peat surface characteristics (0-34 cm) was identified by measuring total mercury in eight peat cores (57 +/- 8 ng g(-1), average SE), vascular plant coverage (32-52%), water table level (4.5-14.1 cm) and dissolved gaseous elemental mercury concentrations (28-51 pg L-1) in the peat water. The GEM fluxes measured by the DFCs showed a distinct diel pattern, but no spatial difference in the average fluxes was detected (ANOVA, alpha = 0.05). Even though the correlation between the Teflon DFC and Aero-DFC was significant (r = 0.76, p &lt; 0.05) the cumulative flux of the Aero-DFC was a factor of three larger. The average flux of the Aero-DFC (1.9 ng m(-2) h(-1)) and REA (2 ng m(-2) h(-1)) were in good agreement. The results indicate that the novel REA design is in agreement for cumulative flux estimates with the Aero-DFC, which incorporates the effect of atmospheric turbulence. The comparison was performed over a fetch with spatially rather homogenous GEM flux dynamics under fairly consistent weather conditions, minimizing the effect of weather influence on the data from the three measurement systems. However, in complex biomes with heterogeneous surface characteristics where there can be large spatial variability in GEM gas exchange, the small footprint of chambers ( &lt; 0.2 m(2)) makes for large coefficients of variation. Thus many chamber measurement replications are needed to establish a credible biome GEM flux estimate, even for a single point in time. Dynamic flux chambers will, however, be able to resolve systematic differences between small scale features, such as experimentally manipulated plots or small scale spatial heterogeneity

    Plants or bacteria? 130 years of mixed imprints in Lake Baldegg sediments (Switzerland), as revealed by compound-specific isotope analysis (CSIA) and biomarker analysis

    Get PDF
    Soil erosion and associated sediment transfer are among the major causes of aquatic ecosystem and surface water quality impairment. Through land use and agricultural practices, human activities modify the soil erosive risk and the catchment connectivity, becoming a key factor of sediment dynamics. Hence, restoration and management plans of water bodies can only be efficient if the sediment sources and the proportion attributable to different land uses are identified. According to this aim, we applied two approaches, namely compound-specific isotope analysis (CSIA) of long-chain fatty acids (FAs) and triterpenoid biomarker analysis, to a eutrophic lake, Lake Baldegg, and its agriculturally used catchment (Switzerland). Soils reflecting the five main land uses of the catchment (arable lands, temporary and permanent grasslands, mixed forests, orchards) were subjected to CSIA. The compound-specific stable isotope Ύ13C signatures clearly discriminate between potential grasslands (permanent and temporary) and forest sources. Signatures of agricultural land and orchards fall in between. The soil signal was compared to the isotopic signature of a lake sediment sequence covering ca. 130 years (before 1885 to 2009). The recent lake samples (1940 to 2009, with the exception of 1964 to 1972) fall into the soil isotopic signature polygon and indicate an important contribution of the forests, which might be explained by (1) the location of the forests on steep slopes, resulting in a higher connectivity of the forests to the lake, and/or (2) potential direct inputs of trees and shrubs growing along the rivers feeding the lake and around the lake. However, the lake sediment samples older than 1940 lie outside the source soils' polygon, as a result of FA contribution from a not yet identified source, most likely produced by an in situ aquatic source, either algae, bacteria or other microorganisms or an ex-site historic source from wetland soils and plants (e.g. Sphagnum species). Despite the overprint of the yet unknown source on the historic isotopic signal of the lake sediments, land use and catchment history are clearly reflected in the CSIA results, with isotopic shifts being synchronous with changes in the catchment, land use and eutrophication history. The investigated highly specific biomarkers were not detected in the lake sediment, even though they were present in the soils. However, two trimethyltetrahydrochrysenes (TTHCs), natural diagenetic products of pentacyclic triterpenoids, were found in the lake sediments. Their origin is attributed to the in situ microbial degradation of some of the triterpenoids. While the need to apportion sediment sources is especially crucial in eutrophic systems, our study stresses the importance of exercising caution with CSIA and triterpenoid biomarkers in such environments, where the active metabolism of bacteria might mask the original terrestrial isotopic signals.</p

    A dual-inlet, single detector relaxed eddy accumulation system for long-term measurement of mercury flux

    Get PDF
    The fate of anthropogenic emissions of mercury (Hg) to the atmosphere is influenced by the exchange of elemental Hg with the earth surface. This exchange holds the key to a better understanding of Hg cycling from local to global scales, which has been difficult to quantify. To advance research about land-atmosphere Hg interactions, we developed a dual-inlet, single detector relaxed eddy accumulation (REA) system. REA is an established technique for measuring turbulent fluxes of trace gases and aerosol particles in the atmospheric surface layer. Accurate determination of gaseous elemental mercury (GEM) fluxes has proven difficult due to technical challenges presented by extremely small concentration differences (typically <0.5 ngm(-3)) between updrafts and downdrafts. We present an advanced REA design that uses two inlets and two pairs of gold cartridges for continuous monitoring of GEM fluxes. This setup reduces the major uncertainty created by the sequential sampling in many previous designs. Additionally, the instrument is equipped with a GEM reference gas generator that monitors drift and recovery rates. These innovations facilitate continuous, autonomous measurement of GEM flux. To demonstrate the system performance, we present results from field campaigns in two contrasting environments: an urban setting with a heterogeneous fetch and a boreal peatland during snowmelt. The observed average emission rates were 15 and 3 n gm(-2) h(-1), respectively. We believe that this dual-inlet, single detector approach is a significant improvement of the REA system for ultra-trace gases and can help to advance our understanding of long-term land-atmosphere GEM exchange.Peer reviewe

    Soil erosion modelling: A bibliometric analysis

    Get PDF
    Soil erosion can present a major threat to agriculture due to loss of soil, nutrients, and organic carbon. Therefore, soil erosion modelling is one of the steps used to plan suitable soil protection measures and detect erosion hotspots. A bibliometric analysis of this topic can reveal research patterns and soil erosion modelling characteristics that can help identify steps needed to enhance the research conducted in this field. Therefore, a detailed bibliometric analysis, including investigation of collaboration networks and citation patterns, should be conducted. The updated version of the Global Applications of Soil Erosion Modelling Tracker (GASEMT) database contains information about citation characteristics and publication type. Here, we investigated the impact of the number of authors, the publication type and the selected journal on the number of citations. Generalized boosted regression tree (BRT) modelling was used to evaluate the most relevant variables related to soil erosion modelling. Additionally, bibliometric networks were analysed and visualized. This study revealed that the selection of the soil erosion model has the largest impact on the number of publication citations, followed by the modelling scale and the publication\u27s CiteScore. Some of the other GASEMT database attributes such as model calibration and validation have negligible influence on the number of citations according to the BRT model. Although it is true that studies that conduct calibration, on average, received around 30% more citations, than studies where calibration was not performed. Moreover, the bibliographic coupling and citation networks show a clear continental pattern, although the co-authorship network does not show the same characteristics. Therefore, soil erosion modellers should conduct even more comprehensive review of past studies and focus not just on the research conducted in the same country or continent. Moreover, when evaluating soil erosion models, an additional focus should be given to field measurements, model calibration, performance assessment and uncertainty of modelling results. The results of this study indicate that these GASEMT database attributes had smaller impact on the number of citations, according to the BRT model, than anticipated, which could suggest that these attributes should be given additional attention by the soil erosion modelling community. This study provides a kind of bibliographic benchmark for soil erosion modelling research papers as modellers can estimate the influence of their paper

    Soil erosion modelling: A global review and statistical analysis

    Get PDF
    To gain a better understanding of the global application of soil erosion prediction models, we comprehensivelyreviewed relevant peer-reviewed research literature on soil-erosion modelling published between 1994 and2017. We aimed to identify (i) the processes and models most frequently addressed in the literature, (ii) the re-gions within which models are primarily applied, (iii) the regions which remain unaddressed and why, and (iv)how frequently studies are conducted to validate/evaluate model outcomes relative to measured data. To per-form this task, we combined the collective knowledge of 67 soil-erosion scientists from 25 countries. Theresulting database, named‘Global Applications of Soil Erosion Modelling Tracker (GASEMT)’, includes 3030 indi-vidual modelling records from 126 countries, encompassing all continents (except Antarctica). Out of the 8471articles identified as potentially relevant, we reviewed 1697 appropriate articles and systematically evaluatedand transferred 42 relevant attributes into the database. This GASEMT database provides comprehensive insightsinto the state-of-the-art of soil- erosion models and model applications worldwide. This database intends to sup-port the upcoming country-based United Nations global soil-erosion assessment in addition to helping to informsoil erosion research priorities by building a foundation for future targeted, in-depth analyses. GASEMT is anopen-source database available to the entire user-community to develop research, rectify errors, andmakefutureexpansion
    • 

    corecore