187 research outputs found

    Optimization of single crystal mirrors for ITER diagnostics

    Get PDF
    Diagnostic mirrors are planned to be used in all optical diagnostics in ITER. Degradation of mirrors due to e.g. deposition of plasma impurities will hamper the entire performance of affected diagnostics. in situ mirror cleaning by plasma sputtering is presently envisaged for the recovery of contaminated mirrors. There are observations showing a signature of sputtering dependence on crystal orientation. Should such a dependence exist, the sputtering of single crystal mirrors could be minimized, thus prolonging a mirror lifetime. Four single crystal molybdenum mirrors with different orientations were produced to study the effect of crystal orientation on sputtering. Mirrors were exposed to argon plasma under identical plasma conditions relevant to those expected in the mirror cleaning systems of ITER. The energy of impinging ions was about 60 eV. The amount of sputtered material corresponded to about a hundred mirror cleaning cycles in argon. Plasma exposures did not affect the mirror reflectivity. The maximum decrease of specular reflectivity did not exceed 5% at 250 nm. The mirrors with orientations [110]/[101] demonstrated up to 42% less sputtering than the mirrors with other crystal orientations. These findings outline the advantage of a favorable crystal orientation for a cleaning of heavy contaminants from ITER mirrors.Peer reviewe

    Damage and deuterium retention of re-solidified tungsten following vertical displacement event-like heat load

    Get PDF
    AbstractSurface morphology and hydrogen isotope retention of W specimen melted with vertical displacement event-like heat load and subsequent deuterium (D) plasma exposure were studied. Applied heat loads using electron beam without raster scanning were about 190 and 230 MW/m2 in heat flux and 0.08, 0.12 and 0.16s in duration. After the heat load application, specimens showed apparent melting spots with grain growth or dense micrometer scale convex structure. Cracks were observed only in the part with the convex structure. D retention in the melted part of specimens was not significantly larger than in the reference specimen despite large changes of surface characteristics

    Smart Tungsten-based Alloys for a First Wall of DEMO

    Get PDF
    During an accident with loss-of-coolant and air ingress in DEMO, the temperature of tungsten first wall cladding may exceed 1000 °C and remain for months leading to tungsten oxidation. The radioactive tungsten oxide can be mobilized to the environment at rates of 10–150 kg per hour. Smart tungsten-based alloys are under development to address this issue. Alloys are aimed to function as pure tungsten during regular plasma operation of DEMO. During an accident, alloying elements will create a protective layer, suppressing release of W oxide. Bulk smart alloys were developed by using mechanical alloying and field-assisted sintering technology. The mechanical alloying process was optimized leading to an increased powder production by at least 40 %. Smart alloys and tungsten were tested under a variety of DEMO-relevant plasma conditions. Both materials demonstrated similar sputtering resistance to deuterium plasma. Under accident conditions, alloys feature a 40-fold reduction of W release compared to that of pure tungsten.</p

    Perceived Conflict of Interest in Health Science Partnerships

    Get PDF
    University scientists conducting research on topics of potential health concern often want to partner with a range of actors, including government entities, non-governmental organizations, and private enterprises. Such partnerships can provide access to needed resources, including funding. However, those who observe the results of such partnerships may judge those results based on who is involved. This set of studies seeks to assess how people perceive two hypothetical health science research collaborations. In doing so, it also tests the utility of using procedural justice concepts to assess perceptions of research legitimacy as a theoretical way to investigate conflict of interest perceptions. Findings show that including an industry collaborator has clear negative repercussions for how people see a research partnership and that these perceptions shape people’s willingness to see the research as a legitimate source of knowledge. Additional research aimed at further communicating procedures that might mitigate the impact of industry collaboration is suggested

    First divertor physics studies in Wendelstein 7-X

    Get PDF
    The Wendelstein 7-X (W7-X) optimized stellarator fusion experiment, which went into operation in 2015, has been operating since 2017 with an un-cooled modular graphite divertor. This allowed first divertor physics studies to be performed at pulse energies up to 80 MJ, as opposed to 4 MJ in the first operation phase, where five inboard limiters were installed instead of a divertor. This, and a number of other upgrades to the device capabilities, allowed extension into regimes of higher plasma density, heating power, and performance overall, e.g. setting a new stellarator world record triple product. The paper focuses on the first physics studies of how the island divertor works. The plasma heat loads arrive to a very high degree on the divertor plates, with only minor heat loads seen on other components, in particular baffle structures built in to aid neutral compression. The strike line shapes and locations change significantly from one magnetic configuration to another, in very much the same way that codes had predicted they would. Strike-line widths are as large as 10 cm, and the wetted areas also large, up to about 1.5 m(2), which bodes well for future operation phases. Peak local heat loads onto the divertor were in general benign and project below the 10 MW m(-2) limit of the future water-cooled divertor when operated with 10 MW of heating power, with the exception of low-density attached operation in the high-iota configuration. The most notable result was the complete (in all 10 divertor units) heat-flux detachment obtained at high-density operation in hydrogen

    Plasma-wall interaction studies within the EUROfusion consortium: Progress on plasma-facing components development and qualification

    Get PDF
    This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.The provision of a particle and power exhaust solution which is compatible with first-wall components and edge-plasma conditions is a key area of present-day fusion research and mandatory for a successful operation of ITER and DEMO. The work package plasma-facing components (WP PFC) within the European fusion programme complements with laboratory experiments, i.e. in linear plasma devices, electron and ion beam loading facilities, the studies performed in toroidally confined magnetic devices, such as JET, ASDEX Upgrade, WEST etc. The connection of both groups is done via common physics and engineering studies, including the qualification and specification of plasma-facing components, and by modelling codes that simulate edge-plasma conditions and the plasma-material interaction as well as the study of fundamental processes. WP PFC addresses these critical points in order to ensure reliable and efficient use of conventional, solid PFCs in ITER (Be and W) and DEMO (W and steel) with respect to heat-load capabilities (transient and steady-state heat and particle loads), lifetime estimates (erosion, material mixing and surface morphology), and safety aspects (fuel retention, fuel removal, material migration and dust formation) particularly for quasi-steady-state conditions. Alternative scenarios and concepts (liquid Sn or Li as PFCs) for DEMO are developed and tested in the event that the conventional solution turns out to not be functional. Here, we present an overview of the activities with an emphasis on a few key results: (i) the observed synergistic effects in particle and heat loading of ITER-grade W with the available set of exposition devices on material properties such as roughness, ductility and microstructure; (ii) the progress in understanding of fuel retention, diffusion and outgassing in different W-based materials, including the impact of damage and impurities like N; and (iii), the preferential sputtering of Fe in EUROFER steel providing an in situ W surface and a potential first-wall solution for DEMO.European Commission; Consortium for Ocean Leadership 633053; Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART

    Applying an extended theoretical framework for data collection mode to health services research

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Over the last 30 years options for collecting self-reported data in health surveys and questionnaires have increased with technological advances. However, mode of data collection such as face-to-face interview or telephone interview can affect how individuals respond to questionnaires. This paper adapts a framework for understanding mode effects on response quality and applies it to a health research context.</p> <p>Discussion</p> <p>Data collection modes are distinguished by key features (whether the survey is self- or interviewer-administered, whether or not it is conducted by telephone, whether or not it is computerised, whether it is presented visually or aurally). Psychological appraisal of the survey request will initially entail factors such as the cognitive burden upon the respondent as well as more general considerations about participation. Subsequent psychological response processes will further determine how features of the data collection mode impact upon the quality of response provided. Additional antecedent factors which may further interact with the response generation process are also discussed. These include features of the construct being measured such as sensitivity, and of the respondent themselves (e.g. their socio-demographic characteristics). How features of this framework relate to health research is illustrated by example.</p> <p>Summary</p> <p>Mode features can affect response quality. Much existing evidence has a broad social sciences research base but is of importance to health research. Approaches to managing mode feature effects are discussed. Greater consideration must be given to how features of different data collection approaches affect response from participants in studies. Study reports should better clarify such features rather than rely upon global descriptions of data collection mode.</p

    Operating a full tungsten actively cooled tokamak: overview of WEST first phase of operation

    Get PDF
    WEST is an MA class superconducting, actively cooled, full tungsten (W) tokamak, designed to operate in long pulses up to 1000 s. In support of ITER operation and DEMO conceptual activities, key missions of WEST are: (i) qualification of high heat flux plasma-facing components in integrating both technological and physics aspects in relevant heat and particle exhaust conditions, particularly for the tungsten monoblocks foreseen in ITER divertor; (ii) integrated steady-state operation at high confinement, with a focus on power exhaust issues. During the phase 1 of operation (2017–2020), a set of actively cooled ITER-grade plasma facing unit prototypes was integrated into the inertially cooled W coated startup lower divertor. Up to 8.8 MW of RF power has been coupled to the plasma and divertor heat flux of up to 6 MW m−2 were reached. Long pulse operation was started, using the upper actively cooled divertor, with a discharge of about 1 min achieved. This paper gives an overview of the results achieved in phase 1. Perspectives for phase 2, operating with the full capability of the device with the complete ITER-grade actively cooled lower divertor, are also described
    corecore