129 research outputs found

    Breakdown of the Korringa Law of Nuclear Spin Relaxation in Metallic GaAs

    Full text link
    We present nuclear spin relaxation measurements in GaAs epilayers using a new pump-probe technique in all-electrical, lateral spin-valve devices. The measured T1 times agree very well with NMR data available for T > 1 K. However, the nuclear spin relaxation rate clearly deviates from the well-established Korringa law expected in metallic samples and follows a sub-linear temperature dependence 1/T1 ~ T^0.6 for 0.1 K < T < 10 K. Further, we investigate nuclear spin inhomogeneities.Comment: 5 pages, 4 (color) figures. arXiv admin note: text overlap with arXiv:1109.633

    Editorial: De epistemologías y periferias en investigación cualitativa

    Get PDF
    URN: urn:nbn:de:0114-fqs060444URN: urn:nbn:de:0114-fqs060444URN: urn:nbn:de:0114-fqs06044

    Rotational-XOR Cryptanalysis of Simon-like Block Ciphers

    Get PDF
    Rotational-XOR cryptanalysis is a cryptanalytic method aimed at finding distinguishable statistical properties in ARX-C ciphers, i.e., ciphers that can be described only using modular addition, cyclic rotation, XOR, and the injection of constants. In this paper we extend RX-cryptanalysis to AND-RX ciphers, a similar design paradigm where the modular addition is replaced by vectorial bitwise AND; such ciphers include the block cipher families Simon and Simeck. We analyse the propagation of RX-differences through AND-RX rounds and develop closed form formula for their expected probability. Finally, we formulate an SMT model for searching RX-characteristics in simon and simeck. Evaluating our model we find RX-distinguishers of up to 20, 27, and 35 rounds with respective probabilities of 226,2422^{-26}, 2^{-42}, and 2542^{-54} for versions of simeck with block sizes of 32, 48, and 64 bits, respectively, for large classes of weak keys in the related-key model. In most cases, these are the longest published distinguishers for the respective variants of simeck. Interestingly, when we apply the model to the block cipher simon, the best distinguisher we are able to find covers 11 rounds of SIMON32 with probability 2242^{-24}. To explain the gap between simon and simeck in terms of the number of distinguished rounds we study the impact of the key schedule and the specific rotation amounts of the round function on the propagation of RX-characteristics in Simon-like ciphers

    A Bit-Vector Differential Model for the Modular Addition by a Constant

    Get PDF
    ARX algorithms are a class of symmetric-key algorithms constructed by Addition, Rotation, and XOR, which achieve the best software performances in low-end microcontrollers. To evaluate the resistance of an ARX cipher against differential cryptanalysis and its variants, the recent automated methods employ constraint satisfaction solvers, such as SMT solvers, to search for optimal characteristics. The main difficulty to formulate this search as a constraint satisfaction problem is obtaining the differential models of the non-linear operations, that is, the constraints describing the differential probability of each non-linear operation of the cipher. While an efficient bit-vector differential model was obtained for the modular addition with two variable inputs, no differential model for the modular addition by a constant has been proposed so far, preventing ARX ciphers including this operation from being evaluated with automated methods. In this paper, we present the first bit-vector differential model for the n-bit modular addition by a constant input. Our model contains O(log2(n)) basic bit-vector constraints and describes the binary logarithm of the differential probability. We also represent an SMT-based automated method to look for differential characteristics of ARX, including constant additions, and we provide an open-source tool ArxPy to find ARX differential characteristics in a fully automated way. To provide some examples, we have searched for related-key differential characteristics of TEA, XTEA, HIGHT, and LEA, obtaining better results than previous works. Our differential model and our automated tool allow cipher designers to select the best constant inputs for modular additions and cryptanalysts to evaluate the resistance of ARX ciphers against differential attacks.acceptedVersio

    Human Movement Is Both Diffusive and Directed

    Get PDF
    Understanding the influence of the built environment on human movement requires quantifying spatial structure in a general sense. Because of the difficulty of this task, studies of movement dynamics often ignore spatial heterogeneity and treat movement through journey lengths or distances alone. This study analyses public bicycle data from central London to reveal that, although journey distances, directions, and frequencies of occurrence are spatially variable, their relative spatial patterns remain largely constant, suggesting the influence of a fixed spatial template. A method is presented to describe this underlying space in terms of the relative orientation of movements toward, away from, and around locations of geographical or cultural significance. This produces two fields: one of convergence and one of divergence, which are able to accurately reconstruct the observed spatial variations in movement. These two fields also reveal categorical distinctions between shorter journeys merely serving diffusion away from significant locations, and longer journeys intentionally serving transport between spatially distinct centres of collective importance. Collective patterns of human movement are thus revealed to arise from a combination of both diffusive and directed movement, with aggregate statistics such as mean travel distances primarily determined by relative numbers of these two kinds of journeys
    corecore