18 research outputs found

    ALADINA – an unmanned research aircraft for observing vertical and horizontal distributions of ultrafine particles within the atmospheric boundary layer

    Get PDF
    This paper presents the unmanned research aircraft Carolo P360 "ALADINA" (Application of Light-weight Aircraft for Detecting IN situ Aerosol) for investigating the horizontal and vertical distribution of ultrafine particles in the atmospheric boundary layer (ABL). It has a wingspan of 3.6 m, a maximum take-off weight of 25 kg and is equipped with aerosol instrumentation and meteorological sensors. A first application of the system, together with the unmanned research aircraft MASC (Multi-Purpose Airborne Carrier) of the Eberhard Karls University of Tübingen (EKUT), is described. As small payload for ALADINA, two condensation particle counters (CPC) and one optical particle counter (OPC) were miniaturised by re-arranging the vital parts and composing them in a space-saving way in the front compartment of the airframe. The CPCs are improved concerning the lower detection threshold and the response time to less than 1.3 s. Each system was characterised in the laboratory and calibrated with test aerosols. The CPCs are operated in this study with two different lower detection threshold diameters of 11 and 18 nm. The amount of ultrafine particles, which is an indicator for new particle formation, is derived from the difference in number concentrations of the two CPCs (ΔN). Turbulence and thermodynamic structure of the boundary layer are described by measurements of fast meteorological sensors that are mounted at the aircraft nose. A first demonstration of ALADINA and a feasibility study were conducted in Melpitz near Leipzig, Germany, at the Global Atmosphere Watch (GAW) station of the Leibniz Institute for Tropospheric Research (TROPOS) on 2 days in October 2013. There, various ground-based instruments are installed for long-term atmospheric monitoring. The ground-based infrastructure provides valuable additional background information to embed the flights in the continuous atmospheric context and is used for validation of the airborne results. The development of the boundary layer, derived from backscatter signals of a portable Raman lidar POLLYXT, allows a quick overview of the current vertical structure of atmospheric particles. Ground-based aerosol number concentrations are consistent with the results from flights in heights of a few metres. In addition, a direct comparison of ALADINA aerosol data and ground-based aerosol data, sampling the air at the same location for more than 1 h, shows comparable values within the range of ± 20 %. MASC was operated simultaneously with complementary flight patterns. It is equipped with the same meteorological instruments that offer the possibility to determine turbulent fluxes. Therefore, additional information about meteorological conditions was collected in the lowest part of the atmosphere. Vertical profiles up to 1000 m in altitude indicate a high variability with distinct layers of aerosol, especially for the small particles of a few nanometres in diameter on 1 particular day. The stratification was almost neutral and two significant aerosol layers were detected with total aerosol number concentrations up to 17 000 ± 3400 cm−3 between 180 and 220 m altitude and 14 000 ± 2800 cm−3 between 550 and 650 m. Apart from those layers, the aerosol distribution was well mixed and reached the total number concentration of less than 8000 ± 1600 cm−3. During another day, the distribution of the small particles in the lowermost ABL was related to the stratification, with continuously decreasing number concentrations from 16 000 ± 3200 cm−3 to a minimum of 4000 ± 800 cm−3 at the top of the inversion at 320 m. Above this, the total number concentration was rather constant. In the region of 500 to 600 m altitude, a significant difference of both CPCs was observed. This event occurred during the boundary layer development in the morning and represents a particle burst within the ABL

    Comparison of eye tracking, electrooculography and an auditory brain-computer interface for binary communication: a case study with a participant in the locked-in state

    Get PDF
    Background In this study, we evaluated electrooculography (EOG), an eye tracker and an auditory brain-computer interface (BCI) as access methods to augmentative and alternative communication (AAC). The participant of the study has been in the locked-in state (LIS) for 6 years due to amyotrophic lateral sclerosis. He was able to communicate with slow residual eye movements, but had no means of partner independent communication. We discuss the usability of all tested access methods and the prospects of using BCIs as an assistive technology. Methods Within four days, we tested whether EOG, eye tracking and a BCI would allow the participant in LIS to make simple selections. We optimized the parameters in an iterative procedure for all systems. Results The participant was able to gain control over all three systems. Nonetheless, due to the level of proficiency previously achieved with his low-tech AAC method, he did not consider using any of the tested systems as an additional communication channel. However, he would consider using the BCI once control over his eye muscles would no longer be possible. He rated the ease of use of the BCI as the highest among the tested systems, because no precise eye movements were required; but also as the most tiring, due to the high level of attention needed to operate the BCI. Conclusions In this case study, the partner based communication was possible due to the good care provided and the proficiency achieved by the interlocutors. To ease the transition from a low-tech AAC method to a BCI once control over all muscles is lost, it must be simple to operate. For persons, who rely on AAC and are affected by a progressive neuromuscular disease, we argue that a complementary approach, combining BCIs and standard assistive technology, can prove valuable to achieve partner independent communication and ease the transition to a purely BCI based approach. Finally, we provide further evidence for the importance of a user-centered approach in the design of new assistive devices

    Atmospheric and Surface Processes, and Feedback Mechanisms Determining Arctic Amplification: A Review of First Results and Prospects of the (AC)3 Project

    Get PDF
    Mechanisms behind the phenomenon of Arctic amplification are widely discussed. To contribute to this debate, the (AC)3 project has been established in 2016. It comprises modeling and data analysis efforts as well as observational elements. The project has assembled a wealth of ground-based, airborne, ship-borne, and satellite data of physical, chemical, and meteorological properties of the Arctic atmosphere, cryosphere, and upper ocean that are available for the Arctic climate research community. Short-term changes and indications of long-term trends in Arctic climate parameters have been detected using existing and new data

    Akustische und visuelle Gehirn-Computer Schnittstellen als Kommunikationshilfen für Menschen mit schweren Muskellähmungen

    No full text
    Brain-computer interfaces (BCIs) could provide a muscle-independent communication channel to persons with severe paralysis by translating brain activity into device commands. As a means of communication, in particular BCIs based on event-related potentials (ERPs) as control signal have been researched. Most of these BCIs rely on visual stimulation and have been investigated with healthy participants in controlled laboratory environments. In proof-of-principle studies targeted end users gained control over BCI systems; however, these systems are not yet established as an assistive technology for persons who would most benefit from them. The main aim of this thesis is to advance the usability of ERP-BCIs for target users. To this end, five studies with BCIs have been conducted that enabled users to communicate by focusing their attention on external stimuli. Two studies were conducted in order to demonstrate the advantages and to further improve the practical application of visual BCIs. In the first study, mental workload was experimentally manipulated during prolonged BCI operation. The study showed the robustness of the visual ERP-BCI since users maintained a satisfactory level of control despite constant distraction in the form of background noise. Moreover, neurophysiological markers that could potentially serve as indicators of high mental workload or fatigue were revealed. This is a first step towards future applications in which the BCI could adapt to the mental state of the user (e.g. pauses if high mental workload is detected to prevent false selections). In the second study, a head-mounted display (HMD), which assures that stimuli are presented in the field of view of the user, was evaluated. High accuracies and information transfer rates, similar to a conventional display, were achieved by healthy participants during a spelling task. Furthermore, a person in the locked-in state (LIS) gained control over the BCI using the HMD. The HMD might be particularly suited for initial communication attempts with persons in the LIS in situations, where mounting a conventional monitor is difficult or not feasible. Visual ERP-BCIs could prove valuable for persons with residual control over eye muscles and sufficient vision. However, since a substantial number of target users have limited control over eye movements and/or visual impairments, BCIs based on non-visual modalities are required. Therefore, a main aspect of this thesis was to improve an auditory paradigm that should enable motor impaired users to spell by focusing attention on different tones. The two conducted studies revealed that healthy participants were able to achieve high spelling performance with the BCI already in the first session and stress the importance of the choice of the stimulus material. The employed natural tones resulted in an increase in performance compared to a previous study that used artificial tones as stimuli. Furthermore, three out of five users with a varying degree of motor impairments could gain control over the system within the five conducted sessions. Their performance increased significantly from the first to the fifth session - an effect not previously observed for visual ERP-BCIs. Hence, training is particularly important when testing auditory multiclass BCIs with potential users. A prerequisite for user satisfaction is that the BCI technology matches user requirements. In this context, it is important to compare BCIs with already established assistive technology. Thus, the fifth study of this dissertation evaluated gaze dependent methods (EOG, eye tracking) as possible control signals for assistive technology and a binary auditory BCI with a person in the locked-in state. The study participant gained control over all tested systems and rated the ease of use of the BCI as the highest among the tested alternatives, but also rated it as the most tiring due to the high amount of attention that was needed for a simple selection. Further efforts are necessary to simplify operation of the BCI. The involvement of end users in all steps of the design and development process of BCIs will increase the likelihood that they can eventually be used as assistive technology in daily life. The work presented in this thesis is a substantial contribution towards the goal of re-enabling communication to users who cannot rely on motor activity to convey their thoughts.Gehirn-Computer Schnittstellen (engl. brain-computer interfaces, BCIs) könnten Menschen mit schweren Muskellähmungen muskelunabhängige Kommunikation ermöglichen, indem sie Gehirnaktivität in Steuerungsbefehle übersetzen. Zu Kommunikationszwecken wurden insbesondere BCIs erforscht, die auf ereigniskorrelierten Potenzialen (EKPs) als Steuerungssignal beruhen. Die Mehrzahl dieser BCIs basiert auf visuellen Paradigmen und wurde unter kontrollierten Laborbedingungen mit gesunden Versuchsteilnehmern untersucht. In Machbarkeitsstudien konnten auch Menschen mit schweren Muskellähmungen Kontrolle erlangen. Jedoch sind BCIs noch nicht im Alltag als Hilfsmittel für diejenigen etabliert, die am meisten von ihnen profitieren würden. Die Gebrauchstauglichkeit für diese Zielgruppe zu erhöhen, ist das Hauptziel der vorliegenden Arbeit. Zu diesem Zweck wurden fünf Studien mit BCIs durchgeführt, die Nutzern durch die Aufmerksamkeitsfokussierung auf externe Reize ermöglichen zu kommunizieren. Um die Vorteile der visuellen Paradigmen zu zeigen und die praktische Anwendbarkeit weiter zu verbessern, wurden zwei Studien durchgeführt. In der ersten Studie wurde die mentale Arbeitsbelastung während längerer Benutzung eines BCI experimentell manipuliert. Die Studie demonstrierte die Robustheit des EKP-BCI. Nutzer konnten trotz konstanter Ablenkung durch Hintergrundgeräusche ein zufriedenstellendes Kontrollniveau aufrechterhalten. Darüber hinaus wurden neurophysiologische Marker gefunden, die als Indikatoren hoher mentaler Arbeitsbelastung oder Ermüdung dienen können. Dies ist ein erster Schritt hin zu Anwendungen, bei denen sich das BCI dem mentalen Zustand des Benutzers anpasst (z.B. indem die Anwendung pausiert, wenn hohe Arbeitsbelastung detektiert wird, um Falschauswahlen zu verhindern). In der zweiten Studie wurde ein Head- Mounted Display (HMD) evaluiert, welches sicherstellt, dass alle Stimuli im Gesichtsfeld des Nutzers angezeigt werden. Dabei wurden von gesunden Versuchsteilnehmern hohe Genauigkeiten und Informationstransferraten beim Schreiben von Wörtern erzielt, vergleichbar mit denen eines herkömmlichen Bildschirms. Zusätzlich erlangte ein Nutzer im Locked-in-Zustand Kontrolle über das BCI mittels des HMD. Das HMD könnte sich insbesondere für initiale Kommunikationsversuche für Personen im Locked-in-Zustand eignen, wenn sich das Aufstellen eines konventionellen Bildschirms als schwierig oder unmöglich erweist. Visuelle EKP-BCIs könnten sich insgesamt als wertvoll für Personen herausstellen, die noch ihre Augenbewegungen kontrollieren können und über ausreichend Sehkraft verfügen. Da eine nicht unerhebliche Zahl von potenziellen Endbenutzern jedoch eingeschränkte Kontrolle über Augenbewegungen und/oder Sehbeeinträchtigungen hat, sind BCIs notwendig, die auf nicht-visuellen Modalitäten beruhen. Im Rahmen dieser Arbeit lag ein Fokus deshalb auf der Weiterentwicklung eines akustischen Paradigmas, welches Nutzern mit motorischen Einschränkungen das Buchstabieren durch die Aufmerksamkeitsfokussierung auf verschiedene Töne ermöglichen soll. Die beiden hierzu durchgeführten Studien zeigten, dass gesunde Versuchsteilnehmer bereits in der ersten Sitzung hohe Buchstabiergenauigkeiten erzielen konnten. Zudem unterstreichen diese Studien die Wichtigkeit der Wahl der Stimuli. Die in den beiden Studien verwendeten natürlichen Geräusche, führten zu einer Leistungsverbesserung verglichen mit einer vorausgegangenen Studie, die künstliche Töne verwendete. Darüber hinaus konnten drei von fünf Nutzern mit Muskellähmungen innerhalb von fünf Sitzungen Kontrolle über das System erlangen. Für die drei Nutzer war die Leistung in der fünften Sitzung dabei deutlich höher als in der ersten. Ein solcher Trainingseffekt wurde mit visuellen Paradigmen in vorausgegangenen Studien bisher nicht berichtet. Dieses Ergebnis betont daher die Bedeutsamkeit von Training während der Erprobung von akustischen Multi-Klassen-BCIs mit Endbenutzern. Eine Grundvoraussetzung für Nutzerzufriedenheit ist, dass die BCI Technologie den Bedürfnissen der Nutzer entspricht. In diesem Zusammenhang ist es wichtig, BCIs mit bereits etablierten Hilfsmitteln zu vergleichen. Daher wurden in der fünften Studie dieser Dissertation sowohl blickabhängige Methoden (EOG, Eye-Tracking) als auch ein akustisches BCI zur binären Kommunikation mit einem Nutzer im Locked-in-Zustand evaluiert. Der Studienteilnehmer erlangte über alle getesteten Systeme die Kontrolle und bewertete den Bedienkomfort des BCI am höchsten verglichen mit den anderen getesteten Methoden. Das BCI wurde jedoch aufgrund der hohen Konzentration, die für die Auswahl eines einzelnen Befehls benötigt wurde, als die ermüdendste bewertet. Weitere Entwicklungen sind notwendig, um die Bedienung des BCI noch stärker zu vereinfachen. Die Einbeziehung von Endbenutzern in alle Schritte des Entwicklungsprozesses eines BCI wird die Wahrscheinlichkeit erhöhen, dass es schließlich als Hilfsmittel im Alltag genutzt werden kann. Die vorliegende Dissertation leistet wesentliche Beiträge, um dieses Ziel zu erreichen: Nämlich Nutzern, welche sich nicht mittels motorischer Aktivität ausdrücken können, eine neue Form der Kommunikation zu ermöglichen

    Getis-Ord's hot- and cold-spot statistics as a basis for multivariate spatial clustering of orchard tree data

    No full text
    Precision agriculture aims at sustainably optimizing the management of cultivated fields by addressing the spatial variability found in crops and their environment. Spatial variability can be evaluated using spatial cluster analysis, which partitions data into homogeneous groups, considering the geographical location of features and their spatial relationships. Spatial clustering methods evaluate the degree of spatial autocorrelation between features and quantify the statistical significance of identified clusters. Clustering of orchard data calls for an approach which is based on modeling point data, i.e. individual trees, which can be related to site-specific measurements. We present and evaluate a spatial clustering method using the Getis-Ord Gi * statistic to the analysis of tree-based data in an experimental orchard. We examine the robustness of this method for the analysis of "hot-spots" (clusters of high data values) and "cold-spots" (clusters of low data values) in orchards and compare it to the k-means clustering algorithm, a widely-used aspatial method. We then present a novel approach which accounts for the spatial structure of data in a multivariate cluster analysis by combining the spatial Getis-Ord Gi * statistic with k-means multivariate clustering. The combined method improved results by both discriminating among features values as well as representing their spatial structure and therefore represents a superior technique for identifying homogenous spatial clusters in orchards. This approach can be used as a tool for precision management of orchards by partitioning trees into management zones. © 2015 Elsevier B.V.Federal Ministry of Agriculture and Rural Development, Nigeria: 304-0450The presented research is part of the ’3D-Mosaic’ project funded by the European Commission’s ERA-Net ICT-Agri project contributed to by Israel’s Ministry of Agriculture and Rural Development, Chief Scientist fund, project 304-0450

    Effects of mental workload and fatigue on the P300, alpha and theta band power during operation of an ERP (P300) brain–computer interface

    No full text
    The study aimed at revealing electrophysiological indicators of mental workload and fatigue during prolonged usage of a P300 brain–computer interface (BCI). Mental workload was experimentally manipulated with dichotic listening tasks. Medium and high workload conditions alternated. Behavioral measures confirmed that the manipulation of mental workload was successful. Reduced P300 amplitude was found for the high workload condition. Along with lower performance and an increase in the subjective level of fatigue, an increase of power in the alpha band was found for the last as compared to the first run of both conditions. The study confirms that a combination of signals derived from the time and frequency domain of the electroencephalogram is promising for the online detection of workload and fatigue. It also demonstrates that satisfactory accuracies can be achieved by healthy participants with the P300 speller, despite constant distraction and when pursuing the task for a long time

    ALADINA - An unmanned research aircraft for observing vertical and horizontal distributions of ultrafine particles within the atmospheric boundary layer

    Get PDF
    This paper presents the unmanned research aircraft Carolo P360 "ALADINA" (Application of Light-weight Aircraft for Detecting IN situ Aerosol) for investigating the horizontal and vertical distribution of ultrafine particles in the atmospheric boundary layer (ABL). It has a wingspan of 3.6 m, a maximum take-off weight of 25 kg and is equipped with aerosol instrumentation and meteorological sensors. A first application of the system, together with the unmanned research aircraft MASC (Multi-Purpose Airborne Carrier) of the Eberhard Karls University of Tübingen (EKUT), is described. As small payload for ALADINA, two condensation particle counters (CPC) and one optical particle counter (OPC) were miniaturised by re-arranging the vital parts and composing them in a space-saving way in the front compartment of the airframe. The CPCs are improved concerning the lower detection threshold and the response time to less than 1.3 s. Each system was characterised in the laboratory and calibrated with test aerosols. The CPCs are operated in this study with two different lower detection threshold diameters of 11 and 18 nm. The amount of ultrafine particles, which is an indicator for new particle formation, is derived from the difference in number concentrations of the two CPCs (ΔN). Turbulence and thermodynamic structure of the boundary layer are described by measurements of fast meteorological sensors that are mounted at the aircraft nose. A first demonstration of ALADINA and a feasibility study were conducted in Melpitz near Leipzig, Germany, at the Global Atmosphere Watch (GAW) station of the Leibniz Institute for Tropospheric Research (TROPOS) on 2 days in October 2013. There, various ground-based instruments are installed for long-term atmospheric monitoring. The ground-based infrastructure provides valuable additional background information to embed the flights in the continuous atmospheric context and is used for validation of the airborne results. The development of the boundary layer, derived from backscatter signals of a portable Raman lidar POLLYXT, allows a quick overview of the current vertical structure of atmospheric particles. Ground-based aerosol number concentrations are consistent with the results from flights in heights of a few metres. In addition, a direct comparison of ALADINA aerosol data and ground-based aerosol data, sampling the air at the same location for more than 1 h, shows comparable values within the range of ± 20 %. MASC was operated simultaneously with complementary flight patterns. It is equipped with the same meteorological instruments that offer the possibility to determine turbulent fluxes. Therefore, additional information about meteorological conditions was collected in the lowest part of the atmosphere. Vertical profiles up to 1000 m in altitude indicate a high variability with distinct layers of aerosol, especially for the small particles of a few nanometres in diameter on 1 particular day. The stratification was almost neutral and two significant aerosol layers were detected with total aerosol number concentrations up to 17 000 ± 3400 cm−3 between 180 and 220 m altitude and 14 000 ± 2800 cm−3 between 550 and 650 m. Apart from those layers, the aerosol distribution was well mixed and reached the total number concentration of less than 8000 ± 1600 cm−3. During another day, the distribution of the small particles in the lowermost ABL was related to the stratification, with continuously decreasing number concentrations from 16 000 ± 3200 cm−3 to a minimum of 4000 ± 800 cm−3 at the top of the inversion at 320 m. Above this, the total number concentration was rather constant. In the region of 500 to 600 m altitude, a significant difference of both CPCs was observed. This event occurred during the boundary layer development in the morning and represents a particle burst within the ABL

    Helicopter borne probe HELiPOD measurements during MOSAiC - Flight 4

    No full text
    The helicopter borne probe HELiPOD was deployed during the MOSAiC expedition on Leg 3 and 4 from the research vessel Polarstern to investigate the ocean-ice-atmosphere exchange. During five flights, a variety of parameters were measured and calculated, concerning atmospheric dynamics (pressure, temperature, humidity, wind vector), aerosol particles (number concentrations in different size classes, absorption coefficients for three different wavelengths), trace gas concentrations (carbon dioxide, methane, ozone), radiation (solar and terrestrial, upward and downward), surface properties (temperature, images) as well as flight state parameters (position, altitude, attitude). All data were re-sampled at 100 Hz to the same time grid, if not indicated differently. The probe enabled the spatial extension of MOSAiC observations in a range of 25 – 60 km distance to Polarstern. After dedicated postprocessing of the complex data set, two out of the five flights, which were performed on 22 July 2020, and with a flight duration of around 1 h per flight, are initially uploaded to the PANGAEA data base. A technical overview of the HELiPOD is given in Pätzold et al. (2023)
    corecore