314 research outputs found

    Cross‐scale seismic anisotropy analysis in metamorphic rocks from the COSC‐1 borehole in the Scandinavian Caledonides

    Get PDF
    Metamorphic and deformed rocks in thrust zones show particularly high seismic anisotropy causing challenges for seismic imaging and interpretation. A good example is the Seve Nappe Complex in central Sweden, an old exhumed orogenic thrust zone that is characterized by a strong but incoherent seismic reflectivity and considerable seismic anisotropy. However, only little is known about their origin in relation to composition and structural influences on measurements at different seismic scales. Here, we present a new integrative study of cross‐scale seismic anisotropy analyses combining mineralogical composition, microstructural analyses and seismic laboratory experiments from the COSC‐1 borehole, which sampled a 2.5 km‐deep section of metamorphic rocks deformed in an orogenic root now preserved in the Lower Seve Nappe. While there is strong crystallographic preferred orientation in most samples in general, variations in anisotropy depend mostly on bulk mineral composition and dominant core lithology as shown by a strong correlation between these. This relationship enables to identify three distinct seismic anisotropy facies providing a continuous anisotropy profile along the borehole. Moreover, comparison of laboratory seismic measurements and electron‐backscatter diffraction data reveals a strong scale‐dependence, which is more pronounced in the highly deformed, heterogeneous samples. This highlights the need for comprehensive cross‐validation of microscale anisotropy analyses with additional lithological data when integrating seismic anisotropy over seismic scales

    A single gene defect causing claustrophobia

    Get PDF
    Claustrophobia, the well-known fear of being trapped in narrow/closed spaces, is often considered a conditioned response to traumatic experience. Surprisingly, we found that mutations affecting a single gene, encoding a stress-regulated neuronal protein, can cause claustrophobia. Gpm6a-deficient mice develop normally and lack obvious behavioral abnormalities. However, when mildly stressed by single-housing, these mice develop a striking claustrophobia-like phenotype, which is not inducible in wild-type controls, even by severe stress. The human GPM6A gene is located on chromosome 4q32-q34, a region linked to panic disorder. Sequence analysis of 115 claustrophobic and non-claustrophobic subjects identified nine variants in the noncoding region of the gene that are more frequent in affected individuals (P=0.028). One variant in the 3â€Čuntranslated region was linked to claustrophobia in two small pedigrees. This mutant mRNA is functional but cannot be silenced by neuronal miR124 derived itself from a stress-regulated transcript. We suggest that loosing dynamic regulation of neuronal GPM6A expression poses a genetic risk for claustrophobia

    Magic Islands and Barriers to Attachment: A Si/Si(111)7x7 Growth Model

    Get PDF
    Surface reconstructions can drastically modify growth kinetics during initial stages of epitaxial growth as well as during the process of surface equilibration after termination of growth. We investigate the effect of activation barriers hindering attachment of material to existing islands on the density and size distribution of islands in a model of homoepitaxial growth on Si(111)7x7 reconstructed surface. An unusual distribution of island sizes peaked around "magic" sizes and a steep dependence of the island density on the growth rate are observed. "Magic" islands (of a different shape as compared to those obtained during growth) are observed also during surface equilibration.Comment: 4 pages including 5 figures, REVTeX, submitted to Physical Review

    The brain as 'immunoprecipitator' of serum autoantibodies against N-Methyl-D-Aspartate receptor subunit NR1

    No full text
    Autoantibodies (AB) against N-methyl-D-aspartate receptor subunit NR1 (NMDAR1) are highly seroprevalent in health and disease. Symptomatic relevance may arise upon compromised blood-brain barrier (BBB). However, it remained unknown whether circulating NMDAR1 AB appear in the cerebrospinal fluid (CSF). Of n5271 subjects with CSF-serum pairs, 26 were NMDAR1 AB seropositive, but only 1 was CSF positive. Contrariwise, tetanus AB (non-brain-binding) were present in serum and CSF of all subjects, with CSF levels higher upon BBB dysfunction. Translational mouse experiments proved the hypothesis that the brain acts as an 'immunoprecipitator'; simultaneous injection of NMDAR1 AB and the non-brain-binding green fluorescent protein AB resulted in high detectability of the former in brain and the latter in CSF

    Heteroepitaxial growth of ferromagnetic MnSb(0001) films on Ge/Si(111) virtual substrates

    Get PDF
    Molecular beam epitaxial growth of ferromagnetic MnSb(0001) has been achieved on high quality, fully relaxed Ge(111)/Si(111) virtual substrates grown by reduced pressure chemical vapor deposition. The epilayers were characterized using reflection high energy electron diffraction, synchrotron hard X-ray diffraction, X-ray photoemission spectroscopy, and magnetometry. The surface reconstructions, magnetic properties, crystalline quality, and strain relaxation behavior of the MnSb films are similar to those of MnSb grown on GaAs(111). In contrast to GaAs substrates, segregation of substrate atoms through the MnSb film does not occur, and alternative polymorphs of MnSb are absent

    Strong Pinning in High Temperature Superconductors

    Full text link
    Detailed measurements of the critical current density jc of YBa2Cu3O7 films grown by pulsed laser deposition reveal the increase of jc as function of the filmthickness. Both this thickness dependence and the field dependence of the critical current are consistently described using a generalization of the theory of strong pinning of Ovchinnikov and Ivlev [Phys. Rev. B 43, 8024 (1991)]. From the model, we deduce values of the defect density (10^21 m^-3) and the elementary pinning force, which are in good agreement with the generally accepted values for Y2O3-inclusions. In the absence of clear evidence that the critical current is determined by linear defects or modulations of the film thickness, our model provides an alternative explanation for the rather universal field dependence of the critical current density found in YBa2Cu3O7 films deposited by different methods.Comment: 11 pages; 8 Figures; Published Phys. Rev. B 66, 024523 (2002

    Mild expression differences of MECP2 influencing aggressive social behavior

    No full text
    The X-chromosomal MECP2/Mecp2 gene encodes methyl-CpG-binding protein 2, a transcriptional activator and repressor regulating many other genes. We discovered in male FVB/N mice that mild (∌50%) transgenic overexpression of Mecp2 enhances aggression. Surprisingly, when the same transgene was expressed in C57BL/6N mice, transgenics showed reduced aggression and social interaction. This suggests that Mecp2 modulates aggressive social behavior. To test this hypothesis in humans, we performed a phenotype-based genetic association study (PGAS) in >1000 schizophrenic individuals. We found MECP2 SNPs rs2239464 (G/A) and rs2734647 (C/T; 3â€ČUTR) associated with aggression, with the G and C carriers, respectively, being more aggressive. This finding was replicated in an independent schizophrenia cohort. Allele-specific MECP2mRNA expression differs in peripheral blood mononuclear cells by ∌50% (rs2734647: C > T). Notably, the brain-expressed, species-conserved miR-511 binds to MECP2 3â€ČUTR only in T carriers, thereby suppressing gene expression. To conclude, subtle MECP2/Mecp2 expression alterations impact aggression. While the mouse data provides evidence of an interaction between genetic background and mild Mecp2 overexpression, the human data convey means by which genetic variation affects MECP2 expression and behavior

    Coherent Stranski-Krastanov growth in 1+1 dimensions with anharmonic interactions: An equilibrium study

    Get PDF
    The formation of coherently strained three-dimensional islands on top of the wetting layer in Stranski-Krastanov mode of growth is considered in a model in 1+1 dimensions accounting for the anharmonicity and non-convexity of the real interatomic forces. It is shown that coherent 3D islands can be expected to form in compressed rather than in expanded overlayers beyond a critical lattice misfit. In the latter case the classical Stranski-Krastanov growth is expected to occur because the misfit dislocations can become energetically favored at smaller island sizes. The thermodynamic reason for coherent 3D islanding is the incomplete wetting owing to the weaker adhesion of the edge atoms. Monolayer height islands with a critical size appear as necessary precursors of the 3D islands. The latter explains the experimentally observed narrow size distribution of the 3D islands. The 2D-3D transformation takes place by consecutive rearrangements of mono- to bilayer, bi- to trilayer islands, etc., after exceeding the corresponding critical sizes. The rearrangements are initiated by nucleation events each next one requiring to overcome a lower energetic barrier. The model is in good qualitative agreement with available experimental observations.Comment: 12 pages text, 15 figures, Accepted in Phys.Rev.B, Vol.61, No2

    Grain Surface Models and Data for Astrochemistry

    Get PDF
    AbstractThe cross-disciplinary field of astrochemistry exists to understand the formation, destruction, and survival of molecules in astrophysical environments. Molecules in space are synthesized via a large variety of gas-phase reactions, and reactions on dust-grain surfaces, where the surface acts as a catalyst. A broad consensus has been reached in the astrochemistry community on how to suitably treat gas-phase processes in models, and also on how to present the necessary reaction data in databases; however, no such consensus has yet been reached for grain-surface processes. A team of ∌25 experts covering observational, laboratory and theoretical (astro)chemistry met in summer of 2014 at the Lorentz Center in Leiden with the aim to provide solutions for this problem and to review the current state-of-the-art of grain surface models, both in terms of technical implementation into models as well as the most up-to-date information available from experiments and chemical computations. This review builds on the results of this workshop and gives an outlook for future directions
    • 

    corecore