129 research outputs found

    Epilepsy priorities in Europe: A report of the ILAE-IBE Epilepsy Advocacy Europe Task Force.

    Get PDF
    The European Forum on Epilepsy Research (ERF2013), which took place in Dublin, Ireland, on May 26-29, 2013, was designed to appraise epilepsy research priorities in Europe through consultation with clinical and basic scientists as well as representatives of lay organizations and health care providers. The ultimate goal was to provide a platform to improve the lives of persons with epilepsy by influencing the political agenda of the EU. The Forum highlighted the epidemiologic, medical, and social importance of epilepsy in Europe, and addressed three separate but closely related concepts. First, possibilities were explored as to how the stigma and social burden associated with epilepsy could be reduced through targeted initiatives at EU national and regional levels. Second, ways to ensure optimal standards of care throughout Europe were specifically discussed. Finally, a need for further funding in epilepsy research within the European Horizon 2020 funding programme was communicated to politicians and policymakers participating to the forum. Research topics discussed specifically included (1) epilepsy in the developing brain; (2) novel targets for innovative diagnostics and treatment of epilepsy; (3) what is required for prevention and cure of epilepsy; and (4) epilepsy and comorbidities, with a special focus on aging and mental health. This report provides a summary of recommendations that emerged at ERF2013 about how to (1) strengthen epilepsy research, (2) reduce the treatment gap, and (3) reduce the burden and stigma associated with epilepsy. Half of the 6 million European citizens with epilepsy feel stigmatized and experience social exclusion, stressing the need for funding trans-European awareness campaigns and monitoring their impact on stigma, in line with the global commitment of the European Commission and with the recommendations made in the 2011 Written Declaration on Epilepsy. Epilepsy care has high rates of misdiagnosis and considerable variability in organization and quality across European countries, translating into huge societal cost (0.2% GDP) and stressing the need for cost-effective programs of harmonization and optimization of epilepsy care throughout Europe. There is currently no cure or prevention for epilepsy, and 30% of affected persons are not controlled by current treatments, stressing the need for pursuing research efforts in the field within Horizon 2020. Priorities should include (1) development of innovative biomarkers and therapeutic targets and strategies, from gene and cell-based therapies to technologically advanced surgical treatment; (2) addressing issues raised by pediatric and aging populations, as well as by specific etiologies and comorbidities such as traumatic brain injury (TBI) and cognitive dysfunction, toward more personalized medicine and prevention; and (3) translational studies and clinical trials built upon well-established European consortia

    Clinical profile and treatment of infantile spasms using vigabatrin and ACTH - a developing country perspective

    Get PDF
    Background: Infantile spasms represent a serious epileptic syndrome that occurs in the early infantile age. ACTH and Vigabatrin are actively investigated drugs in its treatment. This study describes the comparison of their efficacy in a large series of Patients with infantile spasms from Pakistan. Methods: All Patients with infantile spasms who presented to Aga Khan University Hospital, Karachi, Pakistan from January, 2006 to April, 2008 were included in this study. Inclusion criteria were clinical symptoms of infantile spasms, hypsarrythmia or modified hyparrythmia on electroencephalography, at least six months of follow-up period and receipt of any of the two drugs mentioned above. The type of drug distribution was random according to the availability, cost and ease of administration. Results: Fifty six cases fulfilled the inclusion criteria. 62.5% were males. Mean age at onset of seizures was 5 +/- 1.4 months. Fifty two (92.8%) Patients demonstrated hypsarrythmia on electroencephalography. 64.3% cases were identified as symptomatic while 19.6% were cryptogenic and 16.1% were idiopathic. Eighteen Patients received ACTH while 38 Patients received Vigabatrin as first line therapy. Initial response to first line therapy was similar (50% for ACTH and 55.3% for Vigabatrin). Overall, the symptomatic and idiopathic groups responded better to Vigabatrin. The relapse rate was higher for ACTH as compared to Vigabatrin (55.5% vs. 33.3%) when considering the first line therapy. Four Patients evolved to Lennox-Gastaut variant, all of these Patients had initially received Vigabatrin and then ACTH. Conclusion: Vigabatrin and ACTH showed no significant difference in the initial treatment of infantile spasms. However, Patients receiving ACTH were 1.2 times more likely to relapse as compared to the Patients receiving Vigabatrin when considering monotherapy. We suggest that Vigabatrin should be the initial drug of choice in Patients presenting with infantile spasms. However, larger studies from developing countries are required to validate the therapeutic trends observed in this study

    Exome sequencing reveals predominantly de novo variants in disorders with intellectual disability (ID) in the founder population of Finland

    Get PDF
    The genetics of autosomal recessive intellectual disability (ARID) has mainly been studied in consanguineous families, however, founder populations may also be of interest to study intellectual disability (ID) and the contribution of ARID. Here, we used a genotype-driven approach to study the genetic landscape of ID in the founder population of Finland. A total of 39 families with syndromic and non-syndromic ID were analyzed using exome sequencing, which revealed a variant in a known ID gene in 27 families. Notably, 75% of these variants in known ID genes were de novo or suspected de novo (64% autosomal dominant; 11% X-linked) and 25% were inherited (14% autosomal recessive; 7% X-linked; and 4% autosomal dominant). A dual molecular diagnosis was suggested in two families (5%). Via additional analysis and molecular testing, we identified three cases with an abnormal molecular karyotype, including chr21q22.12q22.2 uniparental disomy with a mosaic interstitial 2.7 Mb deletion covering DYRK1A and KCNJ6. Overall, a pathogenic or likely pathogenic variant was identified in 64% (25/39) of the families. Last, we report an alternate inheritance model for 3 known ID genes (UBA7, DDX47, DHX58) and discuss potential candidate genes for ID, including SYPL1 and ERGIC3 with homozygous founder variants and de novo variants in POLR2F and DNAH3. In summary, similar to other European populations, de novo variants were the most common variants underlying ID in the studied Finnish population, with limited contribution of ARID to ID etiology, though mainly driven by founder and potential founder variation in the latter case.Peer reviewe

    Epileptogenic potential of mefloquine chemoprophylaxis: a pathogenic hypothesis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mefloquine has historically been considered safe and well-tolerated for long-term malaria chemoprophylaxis, but prescribing it requires careful attention in order to rule out contraindications to its use. Contraindications include a history of certain neurological conditions that might increase the risk of seizure and other adverse events. The precise pathophysiological mechanism by which mefloquine might predispose those with such a history to seizure remains unclear.</p> <p>Presentation of the hypothesis</p> <p>Studies have demonstrated that mefloquine at doses consistent with chemoprophylaxis accumulates at high levels in brain tissue, which results in altered neuronal calcium homeostasis, altered gap-junction functioning, and contributes to neuronal cell death. This paper reviews the scientific evidence associating mefloquine with alterations in neuronal function, and it suggests the novel hypothesis that among those with the prevalent EPM1 mutation, inherited and mefloquine-induced impairments in neuronal physiologic safeguards might increase risk of GABAergic seizure during mefloquine chemoprophylaxis.</p> <p>Testing and implications of the hypothesis</p> <p>Consistent with case reports of tonic-clonic seizures occurring during mefloquine chemoprophylaxis among those with family histories of epilepsy, it is proposed here that a new contraindication to mefloquine use be recognized for people with EPM1 mutation and for those with a personal history of myoclonus or ataxia, or a family history of degenerative neurologic disorder consistent with EPM1. Recommendations and directions for future research are presented.</p

    New Non-Intravenous Routes for Benzodiazepines in Epilepsy: A Clinician Perspective.

    Get PDF
    Benzodiazepines represent the first-line treatment for the acute management of epileptic seizures and status epilepticus. The emergency use of benzodiazepines must be timely, and because most seizures occur outside of the hospital environment, there is a significant need for delivery methods that are easy for nonclinical caregivers to use and administer quickly and safely. In addition, the ideal route of administration should be reliable in terms of absorption. Rectal diazepam is the only licensed formulation in the USA, whereas rectal diazepam and buccal midazolam are currently licensed in the EU. However, the sometimes unpredictable absorption with rectal and buccal administration means they are not ideal routes. Several alternative routes are currently being explored. This is a narrative review of data about delivery methods for benzodiazepines alternative to the intravenous and oral routes for the acute treatment of seizures. Unconventional delivery options such as direct delivery to the central nervous system or inhalers are reported. Data show that intranasal diazepam or midazolam and the intramuscular auto-injector for midazolam are as effective as rectal or intravenous diazepam. Head-to-head comparisons with buccal midazolam are urgently needed. In addition, the majority of trials focused on children and adolescents, and further trials in adults are warranted

    Artificial intelligence for classification of temporal lobe epilepsy with ROI-level MRI data: A worldwide ENIGMA-Epilepsy study

    Get PDF
    Artificial intelligence has recently gained popularity across different medical fields to aid in the detection of diseases based on pathology samples or medical imaging findings. Brain magnetic resonance imaging (MRI) is a key assessment tool for patients with temporal lobe epilepsy (TLE). The role of machine learning and artificial intelligence to increase detection of brain abnormalities in TLE remains inconclusive. We used support vector machine (SV) and deep learning (DL) models based on region of interest (ROI-based) structural (n = 336) and diffusion (n = 863) brain MRI data from patients with TLE with (“lesional”) and without (“non-lesional”) radiographic features suggestive of underlying hippocampal sclerosis from the multinational (multi-center) ENIGMA-Epilepsy consortium. Our data showed that models to identify TLE performed better or similar (68–75%) compared to models to lateralize the side of TLE (56–73%, except structural-based) based on diffusion data with the opposite pattern seen for structural data (67–75% to diagnose vs. 83% to lateralize). In other aspects, structural and diffusion-based models showed similar classification accuracies. Our classification models for patients with hippocampal sclerosis were more accurate (68–76%) than models that stratified non-lesional patients (53–62%). Overall, SV and DL models performed similarly with several instances in which SV mildly outperformed DL. We discuss the relative performance of these models with ROI-level data and the implications for future applications of machine learning and artificial intelligence in epilepsy care

    Common genetic variation and susceptibility to partial epilepsies: a genome-wide association study

    Get PDF
    Partial epilepsies have a substantial heritability. However, the actual genetic causes are largely unknown. In contrast to many other common diseases for which genetic association-studies have successfully revealed common variants associated with disease risk, the role of common variation in partial epilepsies has not yet been explored in a well-powered study. We undertook a genome-wide association-study to identify common variants which influence risk for epilepsy shared amongst partial epilepsy syndromes, in 3445 patients and 6935 controls of European ancestry. We did not identify any genome-wide significant association. A few single nucleotide polymorphisms may warrant further investigation. We exclude common genetic variants with effect sizes above a modest 1.3 odds ratio for a single variant as contributors to genetic susceptibility shared across the partial epilepsies. We show that, at best, common genetic variation can only have a modest role in predisposition to the partial epilepsies when considered across syndromes in Europeans. The genetic architecture of the partial epilepsies is likely to be very complex, reflecting genotypic and phenotypic heterogeneity. Larger meta-analyses are required to identify variants of smaller effect sizes (odds ratio <1.3) or syndrome-specific variants. Further, our results suggest research efforts should also be directed towards identifying the multiple rare variants likely to account for at least part of the heritability of the partial epilepsies. Data emerging from genome-wide association-studies will be valuable during the next serious challenge of interpreting all the genetic variation emerging from whole-genome sequencing studie

    Febrile seizures and mechanisms of epileptogenesis: insights from an animal model.

    Get PDF
    Temporal lobe epilepsy (TLE) is the most prevalent type of human epilepsy, yet the causes for its development, and the processes involved, are not known. Most individuals with TLE do not have a family history, suggesting that this limbic epilepsy is a consequence of acquired rather than genetic causes. Among suspected etiologies, febrile seizures have frequently been cited. This is due to the fact that retrospective analyses of adults with TLE have demonstrated a high prevalence (20--&gt;60%) of a history of prolonged febrile seizures during early childhood, suggesting an etiological role for these seizures in the development of TLE. Specifically, neuronal damage induced by febrile seizures has been suggested as a mechanism for the development of mesial temporal sclerosis, the pathological hallmark of TLE. However, the statistical correlation between febrile seizures and TLE does not necessarily indicate a causal relationship. For example, preexisting (genetic or acquired) 'causes' that result independently in febrile seizures and in TLE would also result in tight statistical correlation. For obvious reasons, complex febrile seizures cannot be induced in the human, and studies of their mechanisms and of their consequences on brain molecules and circuits are severely limited. Therefore, an animal model was designed to study these seizures. The model reproduces the fundamental key elements of the human condition: the age specificity, the physiological temperatures seen in fevers of children, the length of the seizures and their lack of immediate morbidity. Neuroanatomical, molecular and functional methods have been used in this model to determine the consequences of prolonged febrile seizures on the survival and integrity of neurons, and on hyperexcitability in the hippocampal-limbic network. Experimental prolonged febrile seizures did not lead to death of any of the seizure-vulnerable populations in hippocampus, and the rate of neurogenesis was also unchanged. Neuronal function was altered sufficiently to promote synaptic reorganization of granule cells, and transient and long-term alterations in the expression of specific genes were observed. The contribution of these consequences of febrile seizures to the epileptogenic process is discussed

    Epilepsy, hippocampal sclerosis and febrile seizures linked by common genetic variation around SCN1A

    Get PDF
    Epilepsy comprises several syndromes, amongst the most common being mesial temporal lobe epilepsy with hippocampal sclerosis. Seizures in mesial temporal lobe epilepsy with hippocampal sclerosis are typically drug-resistant, and mesial temporal lobe epilepsy with hippocampal sclerosis is frequently associated with important co-morbidities, mandating the search for better understanding and treatment. The cause of mesial temporal lobe epilepsy with hippocampal sclerosis is unknown, but there is an association with childhood febrile seizures. Several rarer epilepsies featuring febrile seizures are caused by mutations in SCN1A, which encodes a brain-expressed sodium channel subunit targeted by many anti-epileptic drugs. We undertook a genome-wide association study in 1018 people with mesial temporal lobe epilepsy with hippocampal sclerosis and 7552 control subjects, with validation in an independent sample set comprising 959 people with mesial temporal lobe epilepsy with hippocampal sclerosis and 3591 control subjects. To dissect out variants related to a history of febrile seizures, we tested cases with mesial temporal lobe epilepsy with hippocampal sclerosis with (overall n = 757) and without (overall n = 803) a history of febrile seizures. Meta-analysis revealed a genome-wide significant association for mesial temporal lobe epilepsy with hippocampal sclerosis with febrile seizures at the sodium channel gene cluster on chromosome 2q24.3 [rs7587026, within an intron of the SCN1A gene, P = 3.36 × 10(-9), odds ratio (A) = 1.42, 95% confidence interval: 1.26-1.59]. In a cohort of 172 individuals with febrile seizures, who did not develop epilepsy during prospective follow-up to age 13 years, and 6456 controls, no association was found for rs7587026 and febrile seizures. These findings suggest SCN1A involvement in a common epilepsy syndrome, give new direction to biological understanding of mesial temporal lobe epilepsy with hippocampal sclerosis with febrile seizures, and open avenues for investigation of prognostic factors and possible prevention of epilepsy in some children with febrile seizures
    corecore