273 research outputs found

    The Role of Railway Transport in Ceylon: Present Problems and Future Prospects.

    Get PDF
    This Thesis is a study of the role of railway transport in Ceylon. It is divided into three parts. Part One is devoted to the discussion of the Ceylon (Government) Railway's early role in the absence of competition, and to the present problems facing it as a consequence to the development of road transport on the one hand, and to an unrealistic transport policy, on the other. Part Two of the Thesis examines the proper role of the railways. A discussion of the country's financial difficulties, undertaken in chapter 5, reveals the extent to which the national interest clashes with orthodox economics; its importance cannot be overlooked in any solution to the transport problem. Chapter 6 deals with transport costs whilst the pricing and investment policies for the railways are discussed at length in chapters 7 and 8. Chapter 9 examines the transport problem and the solutions. The study of public control of transport is restricted to chapter 10. The results of the analysis in Part Two provides the basis for stating the case of the Railway in Part Three. It is apparent that the future prospects for the Railway depend on the availability of traffic and Government policy on transport in general, and the Railway in particular, Chapter 11 is devoted to an examination of the opportunities that are for it to secure additional traffic; the common arguments in support of the wider use of the Railway are dealt with. Chapter 12 examines a lore realistic transport policy. The proposals for the Railway and the road industry, while accommodating the national interest, are deemed to assure both the economic objective of a transport policy and the proper role of the Railway

    Strain Pattern Analysis of Mylonites From Sitampundi-Kanjamalai Shear Zone, Thiruchengode, South India

    Get PDF
    This study aims to investigate the petrography and strain pattern of mylonites from parts of N-S trending Sitampundi-Kanjamalai Shear Zone (SKSZ) around Thiruchengode. The petrographic study indicates the presence of recrystallized quartz, K-feldspar, plagioclase, biotite and some hornblende. The kinematic analysis of Mylonites was done with the help of shear sense indicators such as recrystallized type quartz (quartz ribbon) around the cluster of feldspar, S-C fabric shows dextral shear sense and some sinisterly shear sense in some parts of SASZ which can be considered as a product of partitioning of both strain and vorticity between domains. These all indicates the simple shear extension along E-W direction and the mylonitic foliation shows the pure shear compression along N-S direction. Further the study of bulk strain analysis by Flinn plot method using L and T section of mylonite shows k<1 which lies in the field of flattening zone of finite strain. The kinematic vorticity number is calculated by Rxz/β method which gives the value of 0.36 indicating the general shear. The rigid grain graph shows that the pure shear component is more ­­­­dominant than the simple shear component. The analysis leads to the conclusion that the mylonite has experienced a high temperature shearing of above 700°cat deep crustal level

    High-resolution refinement of orthorhombic bovine pancreatic phospholipase A 2

    Full text link

    A Study of Cosmic Ray Composition in the Knee Region using Multiple Muon Events in the Soudan 2 Detector

    Full text link
    Deep underground muon events recorded by the Soudan 2 detector, located at a depth of 2100 meters of water equivalent, have been used to infer the nuclear composition of cosmic rays in the "knee" region of the cosmic ray energy spectrum. The observed muon multiplicity distribution favors a composition model with a substantial proton content in the energy region 800,000 - 13,000,000 GeV/nucleus.Comment: 38 pages including 11 figures, Latex, submitted to Physical Review

    N- and C-Terminal Domains of the Calcium Binding Protein EhCaBP1 of the Parasite Entamoeba histolytica Display Distinct Functions

    Get PDF
    Entamoeba histolytica, a protozoan parasite, is the causative agent of amoebiasis, and calcium signaling is thought to be involved in amoebic pathogenesis. EhCaBP1, a Ca2+ binding protein of E. histolytica, is essential for parasite growth. High resolution crystal structure of EhCaBP1 suggested an unusual arrangement of the EF-hand domains in the N-terminal part of the structure, while C-terminal part of the protein was not traced. The structure revealed a trimer with amino terminal domains of the three molecules interacting in a head-to-tail manner forming an assembled domain at the interface with EF1 and EF2 motifs of different molecules coming close to each other. In order to understand the specific roles of the two domains of EhCaBP1, the molecule was divided into two halves, and each half was separately expressed. The domains were characterized with respect to their structure, as well as specific functional features, such as ability to activate kinase and bind actin. The domains were also expressed in E. histolytica cells along with green fluorescent protein. The results suggest that the N-terminal domain retains some of the properties, such as localization in phagocytic cups and activation of kinase. Crystal structure of EhCaBP1 with Phenylalanine revealed that the assembled domains, which are similar to Calmodulin N-terminal domain, bind to Phenylalanine revealing the binding mode to the target proteins. The C-terminal domain did not show any of the activities tested. However, over-expression in amebic cells led to a dominant negative phenotype. The results suggest that the two domains of EhCaBP1 are functionally and structurally different from each other. Both the domains are required for structural stability and full range of functional diversity

    Reparameterization of RNA χ Torsion Parameters for the AMBER Force Field and Comparison to NMR Spectra for Cytidine and Uridine

    Get PDF
    A reparameterization of the torsional parameters for the glycosidic dihedral angle, χ, for the AMBER99 force field in RNA nucleosides is used to provide a modified force field, AMBER99χ. Molecular dynamics simulations of cytidine, uridine, adenosine, and guanosine in aqueous solution using the AMBER99 and AMBER99χ force fields are compared with NMR results. For each nucleoside and force field, 10 individual molecular dynamics simulations of 30 ns each were run. For cytidine with AMBER99χ force field, each molecular dynamics simulation time was extended to 120 ns for convergence purposes. Nuclear magnetic resonance (NMR) spectroscopy, including one-dimensional (1D) 1H, steady-state 1D 1H nuclear Overhauser effect (NOE), and transient 1D 1H NOE, was used to determine the sugar puckering and preferred base orientation with respect to the ribose of cytidine and uridine. The AMBER99 force field overestimates the population of syn conformations of the base orientation and of C2′-endo sugar puckering of the pyrimidines, while the AMBER99χ force field’s predictions are more consistent with NMR results. Moreover, the AMBER99 force field prefers high anti conformations with glycosidic dihedral angles around 310° for the base orientation of purines. The AMBER99χ force field prefers anti conformations around 185°, which is more consistent with the quantum mechanical calculations and known 3D structures of folded ribonucleic acids (RNAs). Evidently, the AMBER99χ force field predicts the structural characteristics of ribonucleosides better than the AMBER99 force field and should improve structural and thermodynamic predictions of RNA structures

    Global overview of the management of acute cholecystitis during the COVID-19 pandemic (CHOLECOVID study)

    Get PDF
    Background: This study provides a global overview of the management of patients with acute cholecystitis during the initial phase of the COVID-19 pandemic. Methods: CHOLECOVID is an international, multicentre, observational comparative study of patients admitted to hospital with acute cholecystitis during the COVID-19 pandemic. Data on management were collected for a 2-month study interval coincident with the WHO declaration of the SARS-CoV-2 pandemic and compared with an equivalent pre-pandemic time interval. Mediation analysis examined the influence of SARS-COV-2 infection on 30-day mortality. Results: This study collected data on 9783 patients with acute cholecystitis admitted to 247 hospitals across the world. The pandemic was associated with reduced availability of surgical workforce and operating facilities globally, a significant shift to worse severity of disease, and increased use of conservative management. There was a reduction (both absolute and proportionate) in the number of patients undergoing cholecystectomy from 3095 patients (56.2 per cent) pre-pandemic to 1998 patients (46.2 per cent) during the pandemic but there was no difference in 30-day all-cause mortality after cholecystectomy comparing the pre-pandemic interval with the pandemic (13 patients (0.4 per cent) pre-pandemic to 13 patients (0.6 per cent) pandemic; P = 0.355). In mediation analysis, an admission with acute cholecystitis during the pandemic was associated with a non-significant increased risk of death (OR 1.29, 95 per cent c.i. 0.93 to 1.79, P = 0.121). Conclusion: CHOLECOVID provides a unique overview of the treatment of patients with cholecystitis across the globe during the first months of the SARS-CoV-2 pandemic. The study highlights the need for system resilience in retention of elective surgical activity. Cholecystectomy was associated with a low risk of mortality and deferral of treatment results in an increase in avoidable morbidity that represents the non-COVID cost of this pandemic

    Intraperitoneal drain placement and outcomes after elective colorectal surgery: international matched, prospective, cohort study

    Get PDF
    Despite current guidelines, intraperitoneal drain placement after elective colorectal surgery remains widespread. Drains were not associated with earlier detection of intraperitoneal collections, but were associated with prolonged hospital stay and increased risk of surgical-site infections.Background Many surgeons routinely place intraperitoneal drains after elective colorectal surgery. However, enhanced recovery after surgery guidelines recommend against their routine use owing to a lack of clear clinical benefit. This study aimed to describe international variation in intraperitoneal drain placement and the safety of this practice. Methods COMPASS (COMPlicAted intra-abdominal collectionS after colorectal Surgery) was a prospective, international, cohort study which enrolled consecutive adults undergoing elective colorectal surgery (February to March 2020). The primary outcome was the rate of intraperitoneal drain placement. Secondary outcomes included: rate and time to diagnosis of postoperative intraperitoneal collections; rate of surgical site infections (SSIs); time to discharge; and 30-day major postoperative complications (Clavien-Dindo grade at least III). After propensity score matching, multivariable logistic regression and Cox proportional hazards regression were used to estimate the independent association of the secondary outcomes with drain placement. Results Overall, 1805 patients from 22 countries were included (798 women, 44.2 per cent; median age 67.0 years). The drain insertion rate was 51.9 per cent (937 patients). After matching, drains were not associated with reduced rates (odds ratio (OR) 1.33, 95 per cent c.i. 0.79 to 2.23; P = 0.287) or earlier detection (hazard ratio (HR) 0.87, 0.33 to 2.31; P = 0.780) of collections. Although not associated with worse major postoperative complications (OR 1.09, 0.68 to 1.75; P = 0.709), drains were associated with delayed hospital discharge (HR 0.58, 0.52 to 0.66; P < 0.001) and an increased risk of SSIs (OR 2.47, 1.50 to 4.05; P < 0.001). Conclusion Intraperitoneal drain placement after elective colorectal surgery is not associated with earlier detection of postoperative collections, but prolongs hospital stay and increases SSI risk

    Integrated Multi-Parameter Exploration Footprints of the Canadian Malartic Disseminated Au, McArthur River-Millennium Unconformity U, and Highland Valley Porphyry Cu Deposits: Preliminary Results from the NSERC-CMIC Mineral Exploration Footprints Research Network

    Get PDF
    Mineral exploration in Canada is increasingly focused on concealed and deeply buried targets, requiring more effective tools to detect large-scale ore-forming systems and to vector from their most distal margins to their high grade cores. A new generation of ore system models is required to achieve this. The Mineral Exploration Footprints Research Network is a consortium of 70 faculty, research associates, and students from 20 Canadian universities working with 30 mining, mineral exploration, and mining service providers to develop new approaches to ore system modelling based on more effective integration and visualization of multi-parameter geological-structural-mineralogical-lithogeochemical-petrophysical-geophysical exploration data. The Network is developing the next generation ore system models and exploration strategies at three sites based on integrated data visualization using self-consistent 3D Common Earth Models and geostatistical/machine learning technologies. Thus far over 60 footprint components and vectors have been identified at the Canadian Malartic stockwork-disseminated Au deposit, 20–30 at the McArthur-Millennium unconformity U deposits, and over 20 in the Highland Valley porphyry Cu system. For the first time, these are being assembled into comprehensive models that will serve as landmark case studies for data integration and analysis in the today’s challenging exploration environment
    corecore