25 research outputs found

    Factors associated with worse lung function in cystic fibrosis patients with persistent staphylococcus aureus

    Get PDF
    Background Staphylococcus aureus is an important pathogen in cystic fibrosis (CF). However, it is not clear which factors are associated with worse lung function in patients with persistent S. aureus airway cultures. Our main hypothesis was that patients with high S. aureus density in their respiratory specimens would more likely experience worsening of their lung disease than patients with low bacterial loads. Methods Therefore, we conducted an observational prospective longitudinal multi-center study and assessed the association between lung function and S. aureus bacterial density in respiratory samples, co-infection with other CF-pathogens, nasal S. aureus carriage, clinical status, antibiotic therapy, IL-6- and IgG-levels against S. aureus virulence factors. Results 195 patients from 17 centers were followed; each patient had an average of 7 visits. Data were analyzed using descriptive statistics and generalized linear mixed models. Our main hypothesis was only supported for patients providing throat specimens indicating that patients with higher density experienced a steeper lung function decline (p<0.001). Patients with exacerbations (n = 60), S. aureus small-colony variants (SCVs, n = 84) and co-infection with Stenotrophomonas maltophilia (n = 44) had worse lung function (p = 0.0068; p = 0.0011; p = 0.0103). Patients with SCVs were older (p = 0.0066) and more often treated with trimethoprim/sulfamethoxazole (p = 0.0078). IL-6 levels positively correlated with decreased lung function (p<0.001), S. aureus density in sputa (p = 0.0016), SCVs (p = 0.0209), exacerbations (p = 0.0041) and co-infections with S. maltophilia (p = 0.0195) or A. fumigatus (p = 0.0496). Conclusions In CF-patients with chronic S. aureus cultures, independent risk factors for worse lung function are high bacterial density in throat cultures, exacerbations, elevated IL-6 levels, presence of S. aureus SCVs and co-infection with S. maltophilia

    Mucosal Autoimmunity to Cell-Bound GP2 Isoforms Is a Sensitive Marker in PSC and Associated With the Clinical Phenotype

    Get PDF
    Introduction: Zymogen granule glycoprotein 2 (GP2) was demonstrated as first autoimmune mucosal target in primary sclerosing cholangitis (PSC) associated with disease severity. Autoantibodies to four GP2 isoforms (aGP21−4) were found in patients with inflammatory bowel diseases but reactivity against specific GP2 epitopes has not been investigated in PSC yet. Hence, the prevalence of aGP21−4 and their association with the PSC phenotype for risk prediction were examined.Methods: GP2 isoforms were stably expressed as glycosylphosphatidyl - inositol-anchored molecules in the membrane of HEp-2 cells and used as autoantigenic targets in indirect immunofluorescence assay (IFA). aGP21−4 IgA and IgG were detected by IFA in 212 PSC patients of four European university hospitals and 145 controls comprising 95 patients with cystic fibrosis and 50 healthy subjects.Results: Combined aGP21 and aGP24 IgA testing with a sensitivity of 66.0% and a specificity of 97.9% resulted in the best diagnostic performance (Youden index: 0.64) regarding all aGP2 and combinations thereof. aGP24 IgA positivity is significantly associated with the presence of cirrhosis in PSC (p = 0.0056). Logistic regression revealed the occurrence of aGP21 IgA (odds ratio [OR] 1.38, 95% confidence interval [CI]: 1.03–1.86) and aGP24 IgA (OR 1.52, 95%CI: 1.07–2.15) along with male gender (OR 0.51, 95%CI: 0.27–0.97) and older age (OR 1.03 95%CI: 1.01–1.05) as significant risks for the concomitant presence of cirrhosis in PSC.Conclusions: Combined aGP21 and aGP24 IgA analysis is preferred to single aGP2 isoform analysis for sensitive PSC autoantibody testing. Positivity for aGP21 and aGP24 IgA is associated with cirrhosis in PSC and could be used for risk stratification

    Neutrophil elastase-mediated increase in airway temperature during inflammation

    No full text
    Background: How elevated temperature is generated during airway infections represents a hitherto unresolved physiological question. We hypothesized that innate immune defence mechanisms would increase luminal airway temperature during pulmonary infection. Methods: We determined the temperature in the exhaled air of cystic fibrosis (CF) patients. To further test our hypothesis, a pouch inflammatory model using neutrophil elastase-deficient mice was employed. Next, the impact of temperature changes on the dominant CF pathogen Pseudomonas aeruginosa growth was tested by plating method and RNAseq. Results: Here we show a temperature of similar to 38 degrees C in neutrophil-dominated mucus plugs of chronically infected CF patients and implicate neutrophil elastase:alpha(1)-proteinase inhibitor complex formation as a relevant mechanism for the local temperature rise. Gene expression of the main pathogen in CF, P. aeruginosa, under anaerobic conditions at 38 degrees C vs 30 degrees C revealed increased virulence traits and characteristic cell wall changes. Conclusion: Neutrophil elastase mediates increase in airway temperature, which may contribute to P. aeruginosa selection during the course of chronic infection in C

    Neutrophil elastase-mediated increase in airway temperature during inflammation

    No full text
    International audienceBACKGROUND: How elevated temperature is generated during airway infections represents a hitherto unresolved physiological question. We hypothesized that innate immune defence mechanisms would increase luminal airway temperature during pulmonary infection. METHODS: We determined the temperature in the exhaled air of cystic fibrosis (CF) patients. To further test our hypothesis, a pouch inflammatory model using neutrophil elastase-deficient mice was employed. Next, the impact of temperature changes on the dominant CF pathogen Pseudomonas aeruginosa growth was tested by plating method and RNAseq. RESULTS: Here we show a temperature of ~38°C in neutrophil-dominated mucus plugs of chronically infected CF patients and implicate neutrophil elastase:α1-proteinase inhibitor complex formation as a relevant mechanism for the local temperature rise. Gene expression of the main pathogen in CF, P. aeruginosa, under anaerobic conditions at 38°C vs 30°C revealed increased virulence traits and characteristic cell wall changes. CONCLUSION: Neutrophil elastase mediates increase in airway temperature, which may contribute to P. aeruginosa selection during the course of chronic infection in CF
    corecore