9 research outputs found

    Two-step offer and return of multiple types of additional genomic findings to families after ultrarapid trio genomic testing in the acute care setting: a study protocol

    No full text
    Introduction As routine genomic testing expands, so too does the opportunity to look for additional health information unrelated to the original reason for testing, termed additional findings (AF). Analysis for many different types of AF may be available, particularly to families undergoing trio genomic testing. The optimal model for service delivery remains to be determined, especially when the original test occurs in the acute care setting.Methods and analysis Families enrolled in a national study providing ultrarapid genomic testing to critically ill children will be offered analysis for three types of AF on their stored genomic data: paediatric-onset conditions in the child, adult-onset conditions in each parent and reproductive carrier screening for the parents as a couple. The offer will be made 3–6 months after diagnostic testing. Parents will have access to a modified version of the Genetics Adviser web-based decision support tool before attending a genetic counselling appointment to discuss consent for AF. Parental experiences will be evaluated using qualitative and quantitative methods on data collected through surveys, appointment recordings and interviews at multiple time points. Evaluation will focus on parental preferences, uptake, decision support use and understanding of AF. Genetic health professionals’ perspectives on acceptability and feasibility of AF will also be captured through surveys and interviews.Ethics and dissemination This project received ethics approval from the Melbourne Health Human Research Ethics Committee as part of the Australian Genomics Health Alliance protocol: HREC/16/MH/251. Findings will be disseminated through peer-review journal articles and at conferences nationally and internationally

    A Founder Mutation in PET100 Causes Isolated Complex IV Deficiency in Lebanese Individuals with Leigh Syndrome

    Get PDF
    Leigh syndrome (LS) is a severe neurodegenerative disorder with characteristic bilateral lesions, typically in the brainstem and basal ganglia. It usually presents in infancy and is genetically heterogeneous, but most individuals with mitochondrial complex IV (or cytochrome c oxidase) deficiency have mutations in the biogenesis factor SURF1. We studied eight complex IV-deficient LS individuals from six families of Lebanese origin. They differed from individuals with SURF1 mutations in having seizures as a prominent feature. Complementation analysis suggested they had mutation(s) in the same gene but targeted massively parallel sequencing (MPS) of 1,034 genes encoding known mitochondrial proteins failed to identify a likely candidate. Linkage and haplotype analyses mapped the location of the gene to chromosome 19 and targeted MPS of the linkage region identified a homozygous c.3G>C (p.Met1?) mutation in C19orf79. Abolishing the initiation codon could potentially still allow initiation at a downstream methionine residue but we showed that this would not result in a functional protein. We confirmed that mutation of this gene was causative by lentiviral-mediated phenotypic correction. C19orf79 was recently renamed PET100 and predicted to encode a complex IV biogenesis factor. We showed that it is located in the mitochondrial inner membrane and forms a ∼300 kDa subcomplex with complex IV subunits. Previous proteomic analyses of mitochondria had overlooked PET100 because its small size was below the cutoff for annotating bona fide proteins. The mutation was estimated to have arisen at least 520 years ago, explaining how the families could have different religions and different geographic origins within Lebanon

    Mutations in LYRM4, encoding ironsulfur cluster biogenesis factor ISD11, cause deficiency of multiple respiratory chain complexes

    No full text
    <p>Ironsulfur clusters (ISCs) are important prosthetic groups that define the functions of many proteins. Proteins with ISCs (called ironsulfur or FeS proteins) are present in mitochondria, the cytosol, the endoplasmic reticulum and the nucleus. They participate in various biological pathways including oxidative phosphorylation (OXPHOS), the citric acid cycle, iron homeostasis, heme biosynthesis and DNA repair. Here, we report a homozygous mutation in LYRM4 in two patients with combined OXPHOS deficiency. LYRM4 encodes the ISD11 protein, which forms a complex with, and stabilizes, the sulfur donor NFS1. The homozygous mutation (c.203GT, p.R68L) was identified via massively parallel sequencing of 1000 mitochondrial genes (MitoExome sequencing) in a patient with deficiency of complexes I, II and III in muscle and liver. These three complexes contain ISCs. Sanger sequencing identified the same mutation in his similarly affected cousin, who had a more severe phenotype and died while a neonate. Complex IV was also deficient in her skeletal muscle. Several other FeS proteins were also affected in both patients, including the aconitases and ferrochelatase. Mutant ISD11 only partially complemented for an ISD11 deletion in yeast. Our in vitro studies showed that the l-cysteine desulfurase activity of NFS1 was barely present when co-expressed with mutant ISD11. Our findings are consistent with a defect in the early step of ISC assembly affecting a broad variety of FeS proteins. The differences in biochemical and clinical features between the two patients may relate to limited availability of cysteine in the newborn period and suggest a potential approach to therapy.</p>

    The Australian Reproductive Genetic Carrier Screening Project (Mackenzie&rsquo;s Mission): Design and Implementation

    No full text
    Reproductive genetic carrier screening (RGCS) provides people with information about their chance of having children with autosomal recessive or X-linked genetic conditions, enabling informed reproductive decision-making. RGCS is recommended to be offered to all couples during preconception or in early pregnancy. However, cost and a lack of awareness may prevent access. To address this, the Australian Government funded Mackenzie&rsquo;s Mission&mdash;the Australian Reproductive Genetic Carrier Screening Project. Mackenzie&rsquo;s Mission aims to assess the acceptability and feasibility of an easily accessible RGCS program, provided free of charge to the participant. In study Phase 1, implementation needs were mapped, and key study elements were developed. In Phase 2, RGCS is being offered by healthcare providers educated by the study team. Reproductive couples who provide consent are screened for over 1200 genes associated with &gt;750 serious, childhood-onset genetic conditions. Those with an increased chance result are provided comprehensive genetic counseling support. Reproductive couples, recruiting healthcare providers, and study team members are also invited to complete surveys and/or interviews. In Phase 3, a mixed-methods analysis will be undertaken to assess the program outcomes, psychosocial implications and implementation considerations alongside an ongoing bioethical analysis and a health economic evaluation. Findings will inform the implementation of an ethically robust RGCS program
    corecore