23 research outputs found

    Harmonized Landsat/Sentinel-2 Reflectance Products for Land Monitoring (Invited)

    Get PDF
    Many land applications require more frequent observations than can be obtained from a single 'Landsat class' sensor. Agricultural monitoring, inland water quality assessment, stand-scale phenology, and numerous other applications all require near-daily imagery at better than 1ha resolution. Thus the land science community has begun expressing a desire for a '30-meter MODIS' global monitoring capability. One cost-effective way to achieve this goal is via merging data from multiple, international observatories into a single virtual constellation. The Harmonized Landsat/Sentinel-2 (HLS) project has been working to generate a seamless surface reflectance product by combining observations from USGS/NASA Landsat-8 and ESA Sentinel-2. Harmonization in this context requires a series of radiometric and geometric transforms to create a single surface reflectance time series agnostic to sensor origin. Radiometric corrections include a common atmospheric correction using the Landsat-8 LaSRC/6S approach, a simple BRDF adjustment to constant solar and nadir view angle, and spectral bandpass adjustments to fit the Landsat-8 OLI reference. Data are then resampled to a consistent 30m UTM grid, using the Sentinel-2 global tile system. Cloud and shadow masking are also implemented. Quality assurance (QA) involves comparison of the output 30m HLS products with near-simultaneous MODIS nadir-adjusted observations. Prototoype HLS products have been processed for approximately 7% of the global land area using the NASA Earth Exchange (NEX) compute environment at NASA Ames, and can be downloaded from the HLS web site (https://hls.gsfc.nasa.gov). A wall-to-wall North America data set is being prepared for 2018. This talk will review the objectives and status of the HLS project, and illustrate applications of high-density optical time series data for agriculture and ecology. We also discuss lessons learned from HLS in the general context of implementing virtual constellations

    Identification of genes required for eye development by high-throughput screening of mouse knockouts.

    Get PDF
    Despite advances in next generation sequencing technologies, determining the genetic basis of ocular disease remains a major challenge due to the limited access and prohibitive cost of human forward genetics. Thus, less than 4,000 genes currently have available phenotype information for any organ system. Here we report the ophthalmic findings from the International Mouse Phenotyping Consortium, a large-scale functional genetic screen with the goal of generating and phenotyping a null mutant for every mouse gene. Of 4364 genes evaluated, 347 were identified to influence ocular phenotypes, 75% of which are entirely novel in ocular pathology. This discovery greatly increases the current number of genes known to contribute to ophthalmic disease, and it is likely that many of the genes will subsequently prove to be important in human ocular development and disease

    Rare and low-frequency coding variants alter human adult height

    Get PDF
    Height is a highly heritable, classic polygenic trait with ~700 common associated variants identified so far through genome - wide association studies . Here , we report 83 height - associated coding variants with lower minor allele frequenc ies ( range of 0.1 - 4.8% ) and effects of up to 2 16 cm /allele ( e.g. in IHH , STC2 , AR and CRISPLD2 ) , >10 times the average effect of common variants . In functional follow - up studies, rare height - increasing alleles of STC2 (+1 - 2 cm/allele) compromise d proteolytic inhibition of PAPP - A and increased cleavage of IGFBP - 4 in vitro , resulting in higher bioavailability of insulin - like growth factors . The se 83 height - associated variants overlap genes mutated in monogenic growth disorders and highlight new biological candidates ( e.g. ADAMTS3, IL11RA, NOX4 ) and pathways ( e.g . proteoglycan/ glycosaminoglycan synthesis ) involved in growth . Our results demonstrate that sufficiently large sample sizes can uncover rare and low - frequency variants of moderate to large effect associated with polygenic human phenotypes , and that these variants implicate relevant genes and pathways
    corecore