97 research outputs found

    Prolonged maturation of prefrontal white matter in chimpanzees

    Get PDF
    Delayed maturation in the prefrontal cortex, a brain region associated with complex cognitive processing, has been proposed to be specific to humans. However, we found, using a longitudinal design, that prefrontal white matter volume in chimpanzees increased gradually with age, and the increase appears to continue beyond the onset of puberty, as in humans. This provides the first evidence for a prolonged period of prefrontal connection elaboration in great apes

    Short communication: epidemiological evidence that simian T-lymphotropic virus type 1 in Macaca fuscata has an alternative transmission route to maternal infection.

    Get PDF
    Serological inspection of Simian T-lymphotropic Virus Type 1 was conducted for a wild colony of Macaca fuscata, which was captured in the middle Honshu, Japan. The increase of positive rate after the juvenile stage with the positive rate reaching 100% (or 35/35) in youngster and adult stages, was observed. This finding suggests that, in contrast with human T-lymphotropic Virus Type 1, horizontal transmission play an important role in increasing prevalence of STLV-1 with age among M. fuscata

    Investigating subtle changes in facial expression to assess acute pain in Japanese macaques

    Get PDF
    Changes in facial expression provide cues for assessing emotional states in mammals and may provide non-verbal signals of pain. This study uses geometric morphometrics (GMM) to explore the facial shape variation in female Japanese macaques who underwent experimental laparotomy. Face image samples were collected from video footage of fourteen macaques before surgery and 1, 3, and 7 days after the procedure. Image samples in the pre-surgical condition were considered pain-free, and facial expressions emerging after surgery were investigated as potential indicators of pain. Landmarks for shape analysis were selected based on the underlying facial musculature and their corresponding facial action units and then annotated in 324 pre-surgical and 750 post-surgical images. The expression of pain is likely to vary between individuals. Tightly closed eyelids or squeezed eyes and lip tension were the most commonly observed facial changes on day 1 after surgery (p < 0.01974). A good overall inter-rater reliability [ICC = 0.99 (95% CI 0.75–1.0)] was observed with the method. The study emphasizes the importance of individualized assessment and provides a better understanding of facial cues to pain for captive macaque care

    Analysis of hair cortisol levels in captive chimpanzees: Effect of various methods on cortisol stability and variability

    Get PDF
    Hair cortisol has been reported to be a useful measure of long-term hypothalamic-pituitary-adrenal (HPA) axis activation in several species. It serves as a practical tool for long-term stress assessment, but it is important to understand the methodological factors that can affects hair cortisol assays to avoid methodological artifacts. To that end, we tested several procedures for measuring cortisol levels in hair collected from captive chimpanzees. The results showed that reproducibility was high, and we found no differences in cortisol levels among the various storage, drying, and sampling methods. However, the fineness of homogenized hair, sample weight, and extraction time affected absolute hair cortisol concentration. Although hair cortisol levels were stable over time, factors that may influence measurement results should be kept constant throughout a study.We modified and validated a methodology involving enzyme immunoassays to reliably measure the hair cortisol levels of captive chimpanzees.The results revealed that the fineness of homogenized hair, sample weight, and extraction time caused variations in absolute hair cortisol concentrations in chimpanzees. In contrast, storage, drying, and sampling from similar body parts did not affect the results

    Developmental trajectory of the corpus callosum from infancy to the juvenile stage: Comparative MRI between chimpanzees and humans

    Get PDF
    [email protected] brains develop during early life is one of the most important topics in neuroscience because it underpins the neuronal functions that mature during this period. A comparison of the neurodevelopmental patterns among humans and nonhuman primates is essential to infer evolutional changes in neuroanatomy that account for higher-order brain functions, especially those specific to humans. The corpus callosum (CC) is the major white matter bundle that connects the cerebral hemispheres, and therefore, relates to a wide variety of neuronal functions. In humans, the CC area rapidly expands during infancy, followed by relatively slow changes. In chimpanzees, based on a cross-sectional study, slow changes in the CC area during the juvenile stage and later have also been reported. However, little is known about the developmental changes during infancy. A longitudinal study is also required to validate the previous cross-sectional observations about the chimpanzee CC. The present longitudinal study of magnetic resonance imaging scans demonstrates that the CC development in chimpanzees and humans is characterized by a rapid increase during infancy, followed by gradual increase during the juvenile stage. Several differences between the two species were also identified. First, there was a tendency toward a greater increase in the CC areas during infancy in humans. Second, there was a tendency toward a greater increase in the rostrum during the juvenile stage in chimpanzees. The rostral body is known to carry fibers between the bilateral prefrontal and premotor cortices, and is involved in behavior planning and control, verbal working memory, and number conception. The rostrum is known to carry fibers between the prefrontal cortices, and is involved in attention control. The interspecies differences in the developmental trajectories of the rostral body and the rostrum might be related to evolutional changes in the brain systems. © 2017 Sakai et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    Gene Organization in Rice Revealed by Full-Length cDNA Mapping and Gene Expression Analysis through Microarray

    Get PDF
    Rice (Oryza sativa L.) is a model organism for the functional genomics of monocotyledonous plants since the genome size is considerably smaller than those of other monocotyledonous plants. Although highly accurate genome sequences of indica and japonica rice are available, additional resources such as full-length complementary DNA (FL-cDNA) sequences are also indispensable for comprehensive analyses of gene structure and function. We cross-referenced 28.5K individual loci in the rice genome defined by mapping of 578K FL-cDNA clones with the 56K loci predicted in the TIGR genome assembly. Based on the annotation status and the presence of corresponding cDNA clones, genes were classified into 23K annotated expressed (AE) genes, 33K annotated non-expressed (ANE) genes, and 5.5K non-annotated expressed (NAE) genes. We developed a 60mer oligo-array for analysis of gene expression from each locus. Analysis of gene structures and expression levels revealed that the general features of gene structure and expression of NAE and ANE genes were considerably different from those of AE genes. The results also suggested that the cloning efficiency of rice FL-cDNA is associated with the transcription activity of the corresponding genetic locus, although other factors may also have an effect. Comparison of the coverage of FL-cDNA among gene families suggested that FL-cDNA from genes encoding rice- or eukaryote-specific domains, and those involved in regulatory functions were difficult to produce in bacterial cells. Collectively, these results indicate that rice genes can be divided into distinct groups based on transcription activity and gene structure, and that the coverage bias of FL-cDNA clones exists due to the incompatibility of certain eukaryotic genes in bacteria

    TET1 and hydroxymethylcytosine in transcription and DNA methylation fidelity

    Get PDF
    Enzymes catalysing the methylation of the 5-position of cytosine (mC) have essential roles in regulating gene expression and maintaining cellular identity. Recently, TET1 was found to hydroxylate the methyl group of mC, converting it to 5-hydroxymethyl cytosine (hmC). Here we show that TET1 binds throughout the genome of embryonic stem cells, with the majority of binding sites located at transcription start sites (TSSs) of CpG-rich promoters and within genes. The hmC modification is found in gene bodies and in contrast to mC is also enriched at CpG-rich TSSs. We provide evidence further that TET1 has a role in transcriptional repression. TET1 binds a significant proportion of Polycomb group target genes. Furthermore, TET1 associates and colocalizes with the SIN3A co-repressor complex. We propose that TET1 fine-tunes transcription, opposes aberrant DNA methylation at CpG-rich sequences and thereby contributes to the regulation of DNA methylation fidelity

    Whole-proteome genetic analysis of dependencies in assembly of a vertebrate kinetochore

    Get PDF
    Kinetochores orchestrate mitotic chromosome segregation. Here, we use quantitative mass spectrometry of mitotic chromosomes isolated from a comprehensive set of chicken DT40 mutants to examine the dependencies of 93 confirmed and putative kinetochore proteins for stable association with chromosomes. Clustering and network analysis reveal both known and unexpected aspects of coordinated behavior for members of kinetochore protein complexes. Surprisingly, CENP-T depends on CENP-N for chromosome localization. The Ndc80 complex exhibits robust correlations with all other complexes in a “core” kinetochore network. Ndc80 associated with CENP-T interacts with a cohort of Rod, zw10, and zwilch (RZZ)–interacting proteins that includes Spindly, Mad1, and CENP-E. This complex may coordinate microtubule binding with checkpoint signaling. Ndc80 associated with CENP-C forms the KMN (Knl1, Mis12, Ndc80) network and may be the microtubule-binding “workhorse” of the kinetochore. Our data also suggest that CENP-O and CENP-R may regulate the size of the inner kinetochore without influencing the assembly of the outer kinetochore
    corecore