8 research outputs found

    The properties of penumbral microjets inclination

    Full text link
    We investigate the dependence of penumbral microjets inclination on the position within penumbra. The high cadence observations taken on 10 November 2006 with the Hinode satellite through the \ion{Ca}{ii} H and G--band filters were analysed to determine the inclination of penumbral microjets. The results were then compared with the inclination of the magnetic field determined through the inversion of the spectropolarimetric observations of the same region. The penumbral microjet inclination is increasing towards the outer edge of the penumbra. The results suggest that the penumbral microjet follows the opening magnetic field lines of a vertical flux tube that creates the sunspot.Comment: 4 pages, 4 figures, A&A Letter in pres

    Chromospheric Heating by Acoustic Waves Compared to Radiative Cooling: II -- Revised Grid of Models

    Get PDF
    Acoustic and magnetoacoustic waves are considered to be possible agents of chromospheric heating. We present a comparison of deposited acoustic energy flux with total integrated radiative losses in the middle chromosphere of the quiet Sun and a weak plage. The comparison is based on a consistent set of high-resolution observations acquired by the IBIS instrument in the Ca II 854.2 nm line. The deposited acoustic-flux energy is derived from Doppler velocities observed in the line core and a set of 1737 non-LTE 1D hydrostatic semi-empirical models, which also provide the radiative losses. The models are obtained by scaling the temperature and column mass of five initial models VAL B-F to get the best fit of synthetic to observed profiles. We find that the deposited acoustic-flux energy in the quiet-Sun chromosphere balances 30-50 % of the energy released by radiation. In the plage, it contributes by 50-60 % in locations with vertical magnetic field and 70-90 % in regions where the magnetic field is inclined more than 50 degrees to the solar surface normal.Comment: 9 pages, 8 figure

    Striation and convection in penumbral filaments

    Get PDF
    Observations with the 1-m Swedish Solar Telescope of the flows seen in penumbral filaments are presented. Time sequences of bright filaments show overturning motions strikingly similar to those seen along the walls of small isolated structures in the active regions. The filaments show outward propagating striations with inclination angles suggesting that they are aligned with the local magnetic field. We interpret it as the equivalent of the striations seen in the walls of small isolated magnetic structures. Their origin is then a corrugation of the boundary between an overturning convective flow inside the filament and the magnetic field wrapping around it. The outward propagation is a combination of a pattern motion due to the downflow observed along the sides of bright filaments, and the Evershed flow. The observed short wavelength of the striation argues against the existence of a dynamically significant horizontal field inside the bright filaments. Its intensity contrast is explained by the same physical effect that causes the dark cores of filaments, light bridges and `canals'. In this way striation represents an important clue to the physics of penumbral structure and its relation with other magnetic structures on the solar surface. We put this in perspective with results from the recent 3-D radiative hydrodynamic simulations.Comment: Accepted for publication in A&

    Temporal Relation between Disappearance of Penumbral Fine-Scale Structure and Evershed Flow

    Full text link
    We investigate the temporal relation between the Evershed flow, dot-like bright features (penumbral grain), the complex magnetic field structure, and dark lanes (dark core) along bright filaments in a sunspot penumbra. We use a time series of high spatial resolution photospheric intensity, vector magnetic field maps, and Doppler velocity maps obtained with the Solar Optical Telescope aboard the \textit{Hinode} spacecraft. We conclude that the appearance and disappearance of the Evershed flow and penumbra grains occur at nearly the same time and are associated with changes of the inclination angle of the magnetic field from vertical to more horizontal. This supports the idea that Evershed flow is a result of thermal convection in the inclined field lines. The dark core of the bright penumbral filament also appears coincidental with the Evershed flow. However, the dark-cored bright filament survives at least for 10-20 minutes after the disappearance of the Evershed flow. The heat input into the bright filament continues after the end of heat transfer by the Evershed flow. This suggests that local heating along the bright filament is important to maintain the brightness of the bright filament in addition to the heat transfer by the Evershed flow.Comment: Accepted for publication in the Astrophysical Journa
    corecore