23 research outputs found

    Stabilizing the Oxygen Lattice and Reversible Oxygen Redox Chemistry through Structural Dimensionality in Lithium-Rich Cathode Oxides.

    Get PDF
    Lattice-oxygen redox (l-OR) has become an essential companion to the traditional transition-metal (TM) redox charge compensation to achieve high capacity in Li-rich cathode oxides. However, the understanding of l-OR chemistry remains elusive, and a critical question is the structural effect on the stability of l-OR reactions. Herein, the coupling between l-OR and structure dimensionality is studied. We reveal that the evolution of the oxygen-lattice structure upon l-OR in Li-rich TM oxides which have a three-dimensional (3D)-disordered cation framework is relatively stable, which is in direct contrast to the clearly distorted oxygen-lattice framework in Li-rich oxides which have a two-dimensional (2D)/3D-ordered cation structure. Our results highlight the role of structure dimensionality in stabilizing the oxygen lattice in reversible l-OR, which broadens the horizon for designing high-energy-density Li-rich cathode oxides with stable l-OR chemistry

    Ellipticity-dependent sequential over-barrier ionization of cold rubidium

    Get PDF
    We perform high-resolution measurements of momentum distribution on Rbn+^{n+} recoil ions up to charge state n=4n=4, where laser-cooled rubidium atoms are ionized by femtosecond elliptically polarized lasers with the pulse duration of 35 fs and the intensity of 3.3×\times1015^{15} W/cm2^2 in the over-barrier ionization (OBI) regime. The momentum distributions of the recoil ions are found to exhibit multi-band structures as the ellipticity varies from the linear to circular polarizations. The origin of these band structures can be explained quantitatively by the classical OBI model and dedicated classical trajectory Monte Carlo simulations with Heisenberg potential. Specifically, with back analysis of the classical trajectories, we reveal the ionization time and the OBI geometry of the sequentially released electrons, disentangling the mechanisms behind the tilted angle of the band structures. These results indicate that the classical treatment can describe the strong-field multiple ionization processes of alkali atoms

    Cytochalasin E, a potential agent for anti-glioma therapy, efficiently induces U87 human glioblastoma cell death

    Get PDF
    Glioblastoma is one of the most malignant brain tumors. Current treatments for glioblastoma usually make poor responses, and novel treatment strategies are extremely imperative. Cytochalasin E was reported to inhibit angiogenesis and tumor growth in some studies, but its effects on gliomas are still unknown. In this study, we found cytochalasin E inhibits U87 human glioblastoma cell growth in a very low concentration range of 10-8 to 10-6 M in a time and concentration dependent manner, and the IC50 were 1.17 ± 0.32 × 10-7 M for 48 h treatment, 6.65 ± 1.12 × 10-8 M for 72 h and 3.78 ± 1.30 × 10-8 M for 96 h. We also found cytochalasin E induces cell-cycle G2/M phase arrest (72 h-treatment of 10-6 M cytochalasin E caused 56.2 ± 6.1 % cells arrest in G2/M phase) and cell apoptosis (96 h-treatment of 10-6 M cytochalasin E induced 24.1 ± 4.2 % cells apoptosis). Thus, cytochalasin E is proposed as a potential agent for glioblastoma chemotherapy.Colegio de Farmacéuticos de la Provincia de Buenos Aire

    AVNP2 protects against cognitive impairments induced by C6 glioma by suppressing tumour associated inflammation in rats

    Get PDF
    © 2020 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/BY-NC-ND/4.0/).Glioblastoma is a kind of malignant tumour and originates from the central nervous system. In the last century, some researchers and clinician have noticed that the psychosocial and neurocognitive functioning of patients with malignant gliomas can be impaired. Many clinical studies have demonstrated that part of patients, adults or children, diagnosed with glioblastoma will suffer from cognitive deficiency during their clinical course, especially in long-term survivors. Many nanoparticles (NPs) can inhibit the biological functions of tumours by modulating tumour-associated inflammation, which provokes angiogenesis and tumour growth. As one of the best antiviral nanoparticles (AVNPs), AVNP2 is the 2nd generation of AVNP2 that have been conjugated to graphite-graphene for improving physiochemical performance and reducing toxicity. AVNP2 inactivates viruses, such as the H1N1 and H5N1influenza viruses and even the SARS coronavirus, while it inhibits bacteria, such as MRSA and E. coli. As antimicrobials, nanoparticles are considered to be one of the vectors for the administration of therapeutic compounds. Yet, little is known about their potential functionalities and toxicities to the neurotoxic effects of cancer. Herein, we explored the functionality of AVNP2 on inhibiting C6 in glioma-bearing rats. The novel object-recognition test and open-field test showed that AVNP2 significantly improved the neuro-behaviour affected by C6 glioma. AVNP2 also alleviated the decline of long-term potentiation (LTP) and the decreased density of dendritic spines in the CA1 region induced by C6. Western blot assay and immunofluorescence staining showed that the expressions of synaptic-related proteins (PSD-95 and SYP) were increased, and these findings were in accordance with the results mentioned above. It revealed that the sizes of tumours in C6 glioma-bearing rats were smaller after treatment with AVNP2. The decreased expression of inflammatory factors (IL-1β, IL-6 and TNF-α) by Western blotting assay and ELISA, angiogenesis protein (VEGF) by Western blotting assay and other related proteins (BDNF, NF-ĸB, iNOS and COX-2) by Western blotting assay in peri-tumour tissue indicated that AVNP2 could control tumour-associated inflammation, thus efficiently ameliorating the local inflammatory condition and, to some extent, inhibiting angiogenesis in C6-bearing rats. In conclusion, our results suggested that AVNP2 could have an effect on the peri-tumor environment, obviously restraining the growth progress of gliomas, and eventually improving cognitive levels in C6-bearing rats.Peer reviewedProo

    2023 roadmap for potassium-ion batteries

    Get PDF
    The heavy reliance of lithium-ion batteries (LIBs) has caused rising concerns on the sustainability of lithium and transition metal and the ethic issue around mining practice. Developing alternative energy storage technologies beyond lithium has become a prominent slice of global energy research portfolio. The alternative technologies play a vital role in shaping the future landscape of energy storage, from electrified mobility to the efficient utilization of renewable energies and further to large-scale stationary energy storage. Potassium-ion batteries (PIBs) are a promising alternative given its chemical and economic benefits, making a strong competitor to LIBs and sodium-ion batteries for different applications. However, many are unknown regarding potassium storage processes in materials and how it differs from lithium and sodium and understanding of solid–liquid interfacial chemistry is massively insufficient in PIBs. Therefore, there remain outstanding issues to advance the commercial prospects of the PIB technology. This Roadmap highlights the up-to-date scientific and technological advances and the insights into solving challenging issues to accelerate the development of PIBs. We hope this Roadmap aids the wider PIB research community and provides a cross-referencing to other beyond lithium energy storage technologies in the fast-pacing research landscape

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    Analysis of temperature characteristics of power transformer withstand short circuit shock for two seconds

    No full text
    The occurrence of a short-circuit fault in a transformer results in a rapid increase in the short-circuit current, and the temperature of the transformer winding rises rapidly. At present, many scholars use analytical formulas to solve for the average temperature of transformer short-circuit for two seconds, but the transient change of the temperature of transformer short-circuit for two seconds is less considered. In order to counter this phenomenon, this paper establishes a two-dimensional planar power transformer model, simulates its fluid-temperature coupling field, and obtains its temperature distribution results. In this thesis, the steady-state fluid-temperature field of 40000 kVA/110 kV oil-immersed power transformers under rated working condition is analyzed. Secondly, on the basis of static analysis, the temperature characteristics after two seconds of short circuit is analyzed numerically. Finally, by comparing the simulated value with the formula calculation value, the calculation results were verified

    Adenovirus-associated anti-miRNA-214 regulates bone metabolism and prevents local osteoporosis in rats

    Get PDF
    Objective: We investigated the expression of miRNA-214 in human osteoporotic bone tissue and tested the utility of adeno-associated virus (AAV) expressing a miRNA-214 inhibitor in terms of preventing local osteoporosis of the femoral condyle in a rat model of osteoporosis.Methods: (1) Femoral heads of patients who underwent hip replacements at our hospital because of femoral neck fractures were collected and divided into osteoporosis and non-osteoporosis groups based on preoperative bone mineral density data. MiRNA-214 expression was detected in bone tissues exhibiting obvious bone microstructural changes in the two groups. (2) A total of 144 SD female rats were divided into four groups: the Control, Model, Negative control (Model + AAV), and Experimental (Model + anti-miRNA-214) groups. AAV-anti-miRNA-214 was injected locally into the rat femoral condyles; we explored whether this prevented or treated local osteoporosis.Results: (1) MiRNA-214 expression in the human femoral head was significantly increased in the osteoporosis group. (2) Compared to the Model and Model + AAV groups, the bone mineral density (BMD) and femoral condyle bone volume/tissue volume (BV/TV) ratio in the Model + anti-miRNA-214 group were significantly higher; in addition, the number (TB.N) and thickness (TB.Th) of the trabecular bones were increased (all p < 0.05). MiRNA-214 expression in the femoral condyles of the Model + anti-miRNA-214 group was significantly higher than that in the other groups. The expression levels of the osteogenesis-related genes Alp, Bglap, and Col1α1 increased, while those of the osteoclast-related genes NFATc1, Acp5, Ctsk, Mmp9, and Clcn7 decreased.Conclusion: AAV-anti-miRNA-214 promoted osteoblast activity and inhibited osteoclast activity in the femoral condyles of osteoporotic rats, improving bone metabolism and slowing osteoporosis progression

    Aerosol Vertical Structure and Optical Properties during Two Dust and Haze Episodes in a Typical Valley Basin City, Lanzhou of Northwest China

    No full text
    The vertical profiles of aerosol optical properties are vital to clarify their transboundary transport, climate forcing and environmental health influences. Based on synergistic measurements of multiple advanced detection techniques, this study investigated aerosol vertical structure and optical characteristics during two dust and haze events in Lanzhou of northwest China. Dust particles originated from remote deserts traveled eastward at different altitudes and reached Lanzhou on 10 April 2020. The trans-regional aloft (~4.0 km) dust particles were entrained into the ground, and significantly modified aerosol optical properties over Lanzhou. The maximum aerosol extinction coefficient (σ), volumetric depolarization ratio (VDR), optical depth at 500 nm (AOD500), and surface PM10 and PM2.5 concentrations were 0.4~1.5 km−1, 0.15~0.30, 0.5~3.0, 200~590 μg/m3 and 134 μg/m3, respectively, under the heavy dust event, which were 3 to 11 times greater than those at the background level. The corresponding Ångström exponent (AE440–870), fine-mode fraction (FMF) and PM2.5/PM10 values consistently persisted within the ranges of 0.10 to 0.50, 0.20 to 0.50, and 0.20 to 0.50, respectively. These findings implied a prevailing dominance of coarse-mode and irregular non-spherical particles. A severe haze episode stemming from local emissions appeared at Lanzhou from 30 December 2020 to 2 January 2021. The low-altitude transboundary transport aerosols seriously deteriorated the air quality level in Lanzhou, and aerosol loading, surface air pollutants and fine-mode particles strikingly increased during the gradual strengthening of haze process. The maximum AOD500, AE440–870nm, FMF, PM2.5 and PM10 concentrations, and PM2.5/PM10 were 0.65, 1.50, 0.85, 110 μg/m3, 180 μg/m3 and 0.68 on 2 January 2021, respectively, while the corresponding σ and VDR at 0.20–0.80 km height were maintained at 0.68 km−1 and 0.03~0.12, implying that fine-mode and spherical small particles were predominant. The profile of ozone concentration exhibited a prominent two-layer structure (0.60–1.40 km and 0.10–0.30 km), and both concentrations at two heights always remained at high levels (60~72 μg/m3) during the entire haze event. Conversely, surface ozone concentration showed a significant decrease during severe haze period, with the peak value of 20~30 μg/m3, which was much smaller than that before haze pollution (~80 μg/m3 on 30 December). Our results also highlighted that the vertical profile of aerosol extinction coefficient was a good proxy for evaluating mass concentrations of surface particulate matters under uniform mixing layers, which was of great scientific significance for retrieving surface air pollutants in remote desert or ocean regions. These statistics of the aerosol vertical profiles and optical properties under heavy dust and haze events in Lanzhou would contribute to investigate and validate the transboundary transport and radiative forcing of aloft aerosols in the application of climate models or satellite remote sensing
    corecore