162 research outputs found
Body mass estimates of the earliest possible hominins and implications for the last common ancestor
Many hypotheses regarding the paleobiology of the earliest possible hominins, Orrorin tugenensis and Ardipithecus ramidus, are dependent upon accurate body mass estimates for these taxa. While we have previously published body mass predictions for Orrorin and Ardipithecus, the accuracies of those estimates depend on the assumption that the postcranial skeletal dimensions and body masses of these taxa followed scaling patterns that were similar to those observed in modern humans. This assumption may not be correct because certain aspects of postcranial morphology in Orrorin and Ardipithecus differ from modern humans, and suggest that their overall body plans might be unique but more similar to modern non-human great apes than to modern humans. Here we present individual body mass predictions for O. tugenensis and Ar. ramidus assuming that they followed postcranial scaling patterns similar to those of chimpanzees. All estimates include individual prediction intervals as measures of uncertainty. In addition, we provide equations for predicting body mass from univariate postcranial measurements based on the largest sample (n = 25) yet compiled of common chimpanzee skeletons with known body masses, which is vital for calculating prediction intervals for individual fossils. Our results show that estimated body masses in Orrorin and Ardipithecus are generally larger when derived from a chimpanzee-like scaling pattern compared to estimates that assume a human-like pattern, though the prediction intervals of the two sets of estimates overlap. In addition, the more complete of the two known Orrorin femora has an overall scaling pattern that is more similar to common chimpanzees than to modern humans, supporting the application of a non-human great ape comparative model. Our new estimates fall near the male (Ardipithecus) average and in between the male and female averages (Orrorin) for wildcaught common chimpanzees. If a chimpanzee-like pattern of scaling between postcranial dimensions and body mass did exist in these earliest hominins, our results suggest the large body masses found in some early australopiths were already present in taxa near the origins of our lineage, and perhaps also in the Pan-Homo last common ancestor
The hand of Homo naledi
A nearly complete right hand of an adult hominin was recovered from the Rising Star cave system, South Africa. Based on associated hominin material, the bones of this hand are attributed to Homo naledi. This hand reveals a long, robust thumb and derived wrist morphology that is shared with Neandertals and modern humans, and considered adaptive for intensified manual manipulation. However, the finger bones are longer and more curved than in most australopiths, indicating frequent use of the hand during life for strong grasping during locomotor climbing and suspension. These markedly curved digits in combination with an otherwise human-like wrist and palm indicate a significant degree of climbing, despite the derived nature of many aspects of the hand and other regions of the postcranial skeleton in H. naledi
The evolution of mammalian brain size
Relative brain size has long been considered a reflection of cognitive capacities and has played a fundamental role in developing core theories in the life sciences. Yet, the notion that relative brain size validly represents selection on brain size relies on the untested assumptions that brain-body allometry is restrained to a stable scaling relationship across species and that any deviation from this slope is due to selection on brain size. Using the largest fossil and extant dataset yet assembled, we find that shifts in allometric slope underpin major transitions in mammalian evolution and are often primarily characterized by marked changes in body size. Our results reveal that the largest-brained mammals achieved large relative brain sizes by highly divergent paths. These findings prompt a reevaluation of the traditional paradigm of relative brain size and open new opportunities to improve our understanding of the genetic and developmental mechanisms that influence brain size
Human mandibular shape is associated with masticatory muscle force
Understanding how and to what extent forces applied to the mandible by the masticatory muscles influence its form, is of considerable importance from clinical, anthropological and evolutionary perspectives. This study investigates these questions. Head CT scans of 382 adults were utilized to measure masseter and temporalis muscle cross-sectional areas (CSA) as a surrogate for muscle force, and 17 mandibular anthropometric measurements. Sixty-two mandibles of young individuals (20-40 years) whose scans were without artefacts (e.g., due to tooth filling) were segmented and landmarked for geometric morphometric analysis. The association between shape and muscle CSA (controlled for size) was assessed using two-block partial least squares analysis. Correlations were computed between mandibular variables and muscle CSAs (all controlled for size). A significant association was found between mandibular shape and muscle CSAs, i.e. larger CSAs are associated with a wider more trapezoidal ramus, more massive coronoid, more rectangular body and a more curved basal arch. Linear measurements yielded low correlations with muscle CSAs. In conclusion, this study demonstrates an association between mandibular muscle force and mandibular shape, which is not as readily identified from linear measurements. Retrodiction of masticatory muscle force and so of mandibular loading is therefore best based on overall mandibular shape
Convergence and divergence in the evolution of cat skulls: temporal and spatial patterns of morphological diversity
Background: Studies of biological shape evolution are greatly enhanced when framed in a phylogenetic perspective.
Inclusion of fossils amplifies the scope of macroevolutionary research, offers a deep-time perspective on tempo and mode
of radiations, and elucidates life-trait changes. We explore the evolution of skull shape in felids (cats) through morphometric
analyses of linear variables, phylogenetic comparative methods, and a new cladistic study of saber-toothed cats.
Methodology/Principal Findings: A new phylogenetic analysis supports the monophyly of saber-toothed cats
(Machairodontinae) exclusive of Felinae and some basal felids, but does not support the monophyly of various sabertoothed
tribes and genera. We quantified skull shape variation in 34 extant and 18 extinct species using size-adjusted linear
variables. These distinguish taxonomic group membership with high accuracy. Patterns of morphospace occupation are
consistent with previous analyses, for example, in showing a size gradient along the primary axis of shape variation and a
separation between large and small-medium cats. By combining the new phylogeny with a molecular tree of extant Felinae,
we built a chronophylomorphospace (a phylogeny superimposed onto a two-dimensional morphospace through time). The
evolutionary history of cats was characterized by two major episodes of morphological divergence, one marking the
separation between saber-toothed and modern cats, the other marking the split between large and small-medium cats.
Conclusions/Significance: Ancestors of large cats in the ‘Panthera’ lineage tend to occupy, at a much later stage,
morphospace regions previously occupied by saber-toothed cats. The latter radiated out into new morphospace regions
peripheral to those of extant large cats. The separation between large and small-medium cats was marked by considerable
morphologically divergent trajectories early in feline evolution. A chronophylomorphospace has wider applications in
reconstructing temporal transitions across two-dimensional trait spaces, can be used in ecophenotypical and functional
diversity studies, and may reveal novel patterns of morphospace occupation
All You Can Eat: High Performance Capacity and Plasticity in the Common Big-Eared Bat, Micronycteris microtis (Chiroptera: Phyllostomidae)
Ecological specialization and resource partitioning are expected to be particularly high in the species-rich communities of tropical vertebrates, yet many species have broader ecological niches than expected. In Neotropical ecosystems, Neotropical leaf-nosed bats (Phyllostomidae) are one of the most ecologically and functionally diverse vertebrate clades. Resource partitioning in phyllostomids might be achieved through differences in the ability to find and process food. We selected Micronycteris microtis, a very small (5–7 g) animalivorous phyllostomid, to explore whether broad resource use is associated with specific morphological, behavioral and performance traits within the phyllostomid radiation. We documented processing of natural prey and measured bite force in free-ranging M. microtis and other sympatric phyllostomids. We found that M. microtis had a remarkably broad diet for prey size and hardness. For the first time, we also report the consumption of vertebrates (lizards), which makes M. microtis the smallest carnivorous bat reported to date. Compared to other phyllostomids, M. microtis had the highest bite force for its size and cranial shape and high performance plasticity. Bite force and cranial shape appear to have evolved rapidly in the M. microtis lineage. High performance capacity and high efficiency in finding motionless prey might be key traits that allow M. microtis, and perhaps other species, to successfully co-exist with other gleaning bats
Radiographs Reveal Exceptional Forelimb Strength in the Sabertooth Cat, Smilodon fatalis
Background: The sabertooth cat, Smilodon fatalis, was an enigmatic predator without a true living analog. Their elongate canine teeth were more vulnerable to fracture than those of modern felids, making it imperative for them to immobilize prey with their forelimbs when making a kill. As a result, their need for heavily muscled forelimbs likely exceeded that of modern felids and thus should be reflected in their skeletons. Previous studies on forelimb bones of S. fatalis found them to be relatively robust but did not quantify their ability to withstand loading. Methodology/Principal Findings: Using radiographs of the sabertooth cat, Smilodon fatalis, 28 extant felid species, and the larger, extinct American lion Panthera atrox, we measured cross-sectional properties of the humerus and femur to provide the first estimates of limb bone strength in bending and torsion. We found that the humeri of Smilodon were reinforced by cortical thickening to a greater degree than those observed in any living felid, or the much larger P. atrox. The femur of Smilodon also was thickened but not beyond the normal variation found in any other felid measured. Conclusions/Significance: Based on the cross-sectional properties of its humerus, we interpret that Smilodon was a powerful predator that differed from extant felids in its greater ability to subdue prey using the forelimbs. This enhanced forelimb strength was part of an adaptive complex driven by the need to minimize the struggles of prey in order to protec
Eye Size at Birth in Prosimian Primates: Life History Correlates and Growth Patterns
BACKGROUND: Primates have large eyes relative to head size, which profoundly influence the ontogenetic emergence of facial form. However, growth of the primate eye is only understood in a narrow taxonomic perspective, with information biased toward anthropoids.\ud
\ud
METHODOLOGY/PRINCIPAL FINDINGS: We measured eye and bony orbit size in perinatal prosimian primates (17 strepsirrhine taxa and Tarsius syrichta) to infer the extent of prenatal as compared to postnatal eye growth. In addition, multiple linear regression was used to detect relationships of relative eye and orbit diameter to life history variables. ANOVA was used to determine if eye size differed according to activity pattern. In most of the species, eye diameter at birth measures more than half of that for adults. Two exceptions include Nycticebus and Tarsius, in which more than half of eye diameter growth occurs postnatally. Ratios of neonate/adult eye and orbit diameters indicate prenatal growth of the eye is actually more rapid than that of the orbit. For example, mean neonatal transverse eye diameter is 57.5% of the adult value (excluding Nycticebus and Tarsius), compared to 50.8% for orbital diameter. If Nycticebus is excluded, relative gestation age has a significant positive correlation with relative eye diameter in strepsirrhines, explaining 59% of the variance in relative transverse eye diameter. No significant differences were found among species with different activity patterns.\ud
\ud
CONCLUSIONS/SIGNIFICANCE: The primate developmental strategy of relatively long gestations is probably tied to an extended period of neural development, and this principle appears to apply to eye growth as well. Our findings indicate that growth rates of the eye and bony orbit are disassociated, with eyes growing faster prenatally, and the growth rate of the bony orbit exceeding that of the eyes after birth. Some well-documented patterns of orbital morphology in adult primates, such as the enlarged orbits of nocturnal species, mainly emerge during postnatal development.\ud
\u
- …