16 research outputs found

    Clarifying the Relative Role of Forcing Uncertainties and Initial‐Condition Unknowns in Spreading the Climate Response to Volcanic Eruptions

    Get PDF
    Radiative forcing from volcanic aerosol impacts surface temperatures; however, the background climate state also affects the response. A key question thus concerns whether constraining forcing estimates is more important than constraining initial conditions for accurate simulation and attribution of posteruption climate anomalies. Here we test whether different realistic volcanic forcing magnitudes for the 1815 Tambora eruption yield distinguishable ensemble surface temperature responses. We perform a cluster analysis on a superensemble of climate simulations including three 30‐member ensembles using the same set of initial conditions but different volcanic forcings based on uncertainty estimates. Results clarify how forcing uncertainties can overwhelm initial‐condition spread in boreal summer due to strong direct radiative impact, while the effect of initial conditions predominate in winter, when dynamics contribute to large ensemble spread. In our setup, current uncertainties affecting reconstruction‐simulation comparisons prevent conclusions about the magnitude of the Tambora eruption and its relation to the “year without summer.

    Aerosol size confines climate response to volcanic super-eruptions

    Get PDF
    Extremely large volcanic eruptions have been linked to global climate change, biotic turnover, and, for the Younger Toba Tuff (YTT) eruption 74,000 years ago, near-extinction of modern humans. One of the largest uncertainties of the climate effects involves evolution and growth of aerosol particles. A huge atmospheric concentration of sulfate causes higher collision rates, larger particle sizes, and rapid fall out, which in turn greatly affects radiative feedbacks. We address this key process by incorporating the effects of aerosol microphysical processes into an Earth System Model. The temperature response is shorter (9–10 years) and three times weaker (−3.5 K at maximum globally) than estimated before, although cooling could still have reached −12 K in some midlatitude continental regions after one year. The smaller response, plus its geographic patchiness, suggests that most biota may have escaped threshold extinction pressures from the eruption

    An abrupt weakening of the subpolar gyre as trigger of Little Ice Age-type episodes

    Get PDF
    We investigate the mechanism of a decadal-scale weakening shift in the strength of the subpolar gyre (SPG) that is found in one among three last millennium simulations with a state-of-the-art Earth system model. The SPG shift triggers multicentennial anomalies in the North Atlantic climate driven by long-lasting internal feedbacks relating anomalous oceanic and atmospheric circulation, sea ice extent, and upper-ocean salinity in the Labrador Sea. Yet changes throughout or after the shift are not associated with a persistent weakening of the Atlantic Meridional Overturning Circulation or shifts in the North Atlantic Oscillation. The anomalous climate state of the North Atlantic simulated after the shift agrees well with climate reconstructions from within the area, which describe a transition between a stronger and weaker SPG during the relatively warm medieval climate and the cold Little Ice Age respectively. However, model and data differ in the timing of the onset. The simulated SPG shift is caused by a rapid increase in the freshwater export from the Arctic and associated freshening in the upper Labrador Sea. Such freshwater anomaly relates to prominent thickening of the Arctic sea ice, following the cluster of relatively small-magnitude volcanic eruptions by 1600 CE. Sensitivity experiments without volcanic forcing can nonetheless produce similar abrupt events; a necessary causal link between the volcanic cluster and the SPG shift can therefore be excluded. Instead, preconditioning by internal variability explains discrepancies in the timing between the simulated SPG shift and the reconstructed estimates for the Little Ice Age onset

    Simulating the Common Era: The Past2k working group of PMIP

    Get PDF
    Simulations of Common Era climate evolution coordinated by PMIP's "Past2K" working group together with multiproxy reconstructions from the PAGES 2k Network provide pivotal understanding for the evolution of the modern climate system and for expected changes in the near future

    Estimating trends of Atlantic meridional overturning circulation from long-term hydrographic data and model simulations

    Get PDF
    The ocean meridional overturning circulation (MOC) plays a central role for the climate in the Atlantic realm. Since scenarios for future climate change indicate a significant reduction of the MOC under global warming, an assessment of variations and trends of the real MOC is important. Using observations at ocean weather ship (OWS) stations and along oceanic sections, we examine the hydrographic information that can be used to determine MOC trends via its signature in water mass properties obtained from model simulations with the climate model ECHAM5/MPI-OM. We show that temperature trends at mid-latitudes provide useful indirect measure of large-scale changes of deep circulation: A mid-depth warming is related to MOC weakening and a cooling to MOC strengthening. Based on our model experiments, we argue that a continuation of measurements at key OWS sites may contribute to a timely detection of a possible future MOC slowdown and to separate the signal from interannual-to-multidecadal MOC variability. The simulations suggest that the subsurface hydrographic information related to MOC has a lower variability than the MOC trend measured directly. Based on our model and the available long-term hydrographic data, we estimate non-significant MOC trends for the last 80 years. For the twenty-first century, however, the model simulations predict a significant MOC decline and accompanied mid-depth warming trend

    Lessons from the past millennium

    No full text
    corecore