1,568 research outputs found

    On the origin of the anomalous behaviour of 2+ excitation energies in the neutron-rich Cd isotopes

    Full text link
    Recent experimental results obtained using β\beta decay and isomer spectroscopy indicate an unusual behaviour of the energies of the first excited 2+^{+} states in neutron-rich Cd isotopes approaching the N=82 shell closure. To explain the unexpected trend, changes of the nuclear structure far-off stability have been suggested, namely a quenching of the N=82 shell gap already in 130^{130}Cd, only two proton holes away from doubly magic 132^{132}Sn. We study the behaviour of the 2+^+ energies in the Cd isotopes from N=50 to N=82, i.e. across the entire span of a major neutron shell using modern beyond mean field techniques and the Gogny force. We demonstrate that the observed low 2+^+ excitation energy in 128^{128}Cd close to the N=82 shell closure is a consequence of the doubly magic character of this nucleus for oblate deformation favoring thereby prolate configurations rather than spherical ones.Comment: 10 pages, 4 figures, to be publised in Phys. Lett.

    β decay of semi-magic 130 Cd: Revision and extension of the level scheme of 130 In

    Full text link
    The β decay of the semi-magic nucleus Cd130 has been studied at the RIBF facility at the RIKEN Nishina Center. The high statistics of the present experiment allowed for a revision of the established level scheme of In130 and the observation of additional β feeding to high-lying core-excited states in In130. The experimental results are compared to shell-model calculations employing a model space consisting of the full major N=50-82 neutron and Z=28-50 proton shells and the NA-14 interaction, and good agreement is foundThis work was supported by the Spanish Ministerio de Ciencia e Innovacion under contract FPA2011-29854-C04 and the Spanish Ministerio de Economía y Competitividad under Contract No. FPA2014-57196-C5- 4-P, the Generalitat Valenciana (Spain) under Grant No. PROMETEO/2010/101, the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (NRF-2014S1A2A2028636, 2016K1A3A7A09005579), the Priority Centers Research Program in Korea (2009-0093817), OTKA Contract No. K-100835, JSPS KAKENHI (Grant No. 25247045), the European Commission through the Marie Curie Actions call FP7-PEOPLE-2011-IEF under Contract No. 300096, the US Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357, the STFC (UK), the “RIKEN foreign research program,” the German BMBF (No. 05P12RDCIA, No. 05P12RDNUP, and No. 05P12PKFNE), HIC for FAIR, the DFG cluster of excellence “Origin and Structure of the Universe,” and DFG (Contract No. KR2326/2-1

    First observation of γ rays emitted from excited states south-east of 132Sn: The π g−1 9/2 ⊗ ν f7/2 multiplet of 132In83

    Full text link
    Artículo escrito por muchos autores, sólo se referencian el que aparece en primer lugar, el nombre del grupo de colaboración y los autores que firman como pertenecientes a la UAMFor the first time, the γ decay of excited states has been observed in a nucleus situated in the quadrant south-east of doubly magic 132Sn, a region in which experimental information so far is limited to ground-state properties. Six γ rays with energies of 50, 86, 103, 227, 357, and 602 keV were observed following the β-delayed neutron emission from 133Cd85, populated in the projectile fission of a 238U beam at the Radioactive Isotope Beam Factory at RIKEN within the EURICA project. The new experimental information is compared to the results of a modern realistic shell-model calculation, the first one in this region very far from stability, focusing in particular on the π0g−1 9/2 ⊗ ν1f7/2 particle-hole multiplet in 132In83. In addition, theoretical estimates based on a scaling of the two-body matrix elements for the πh−1 11/2 ⊗ νg9/2 analog multiplet in 208Tl127, one major proton and one major neutron shell above, are presentedThis work was supported by the Spanish Ministerio de Ciencia e Innovación under Contract No. FPA2011-29854-C04 and the Spanish Ministerio de Economía y Competitividad under Contract No. FPA2014-57196-C5- 4-P, the Generalitat Valenciana (Spain) under Grant No. PROMETEO/2010/101, the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No. NRF-2012R1A1A1041763), the Priority Centers Research Program in Korea (2009-0093817), OTKA Contract No. K-100835, JSPS KAKENHI (Grant No. 25247045), the European Commission through the Marie Curie Actions call FP7-PEOPLE-2011-IEF under Contract No. 300096 and the German BMBF (No. 05P12RDCIA and No. 05P12RDNUP), and Helmholtz International Center for FAI

    Low-frequency variability of the Arctic climate: The role of oceanic and atmospheric heat transport variations

    Get PDF
    Changes in meridional heat transports, carried either by the atmosphere (HTRA) or by the ocean (HTRO), have been proposed to explain the decadal to multidecadal climate variations in the Arctic. On the other hand, model simulations indicate that, at high northern latitudes, variations in HTRA and HTRO are strongly coupled and may even compensate each other. A multi-century control integration with the Max Planck Institute global atmosphere-ocean model is analyzed to investigate the relative role of the HTRO and HTRA variations in shaping the Arctic climate and the consequences of their possible compensation. In the simulation, ocean heat transport anomalies modulate sea ice cover and surface heat fluxes mainly in the Barents Sea/Kara Sea region and the atmosphere responds with a modified pressure field. In response to positive HTRO anomalies there are negative HTRA anomalies associated with an export of relatively warm air southward to Western Siberia and a reduced inflow of heat over Alaska and northern Canada. While the compensation mechanism is prominent in this model, its dominating role is not constant over long time scales. The presence or absence of the compensation is determined mainly by the atmospheric circulation in the Pacific sector of the Arctic where the two leading large-scale atmospheric circulation patterns determine the lateral fluxes with varying contributions. The degree of compensation also determines the heat available to modulate the large-scale Arctic climate. The combined effect of atmospheric and oceanic contributions has to be considered to explain decadal-scale warming or cooling trends

    Frictionally modified flow in a deep ocean channel: Application to the Vema Channel

    Get PDF
    The modification of the exchange flow in a deep southern hemisphere passage, resembling the Vema Channel, by frictionally induced secondary circulation is investigated numerically. The hydrostatic primitive equation model is a two-dimensional version of the sigma-coordinate Princeton Ocean Model. The time dependent response of a stratified along-channel flow, forced by barotropic or baroclinic pressure gradients, is examined. Near the bottom, where the along-channel now is retarded, there is cross-channel Ekman nux that is associated with downwelling on the eastern side and upwelling on the western side of the channel. In the presence of stratification the cross-channel flow rearranges the density structure, which in turn acts on the along-channel velocity via the thermal wind relation. Eventually the cross-isobath Ekman flux is shut down. In the case of baroclinically driven flow of Antarctic Bottom Water through the Vema Channel the model reproduces the observed shape of the deep temperature profiles and their cross-channel asymmetry. The model offers an explanation that is alternative or supplementary to inviscid multilayer hydraulic theory that;was proposed in earlier studies. It explains the extremely thick bottom boundary layers in the center and on the western slope of the channel. The deep thermocline is spread out in the west and sharpened in the east, and the coldest water is found on the eastern side of the deep trough; The modified density field reduces the along-channel flow near the bottom and focuses it into a narrow jet on the eastern side of the channel

    Revisiting the Meteor 1925-1927 hydrographic dataset reveals centennial full-depth changes in the Atlantic Ocean

    No full text
    The hydrographic data set of the German Atlantic Expedition (GAE) 1925-1927 is compared with the contemporary profiling float and ship-based hydrography to reveal full-depth changes in the Atlantic Ocean between 19°N and 64°S. The volume-mean warming over the last 80 years amounts to 0.119 ± 0.067°C, accompanied by an increase in salinity of 0.014 ± 0.010. A clear vertical structure of these changes is observed: on average, the ocean has warmed by 0.272 ± 0.093°C and became saltier by 0.030 ± 0.014 down to about 2000 m, but cooled and freshened slightly in the deeper layers. These changes can be traced throughout the whole hydrographic survey, indicating the basin-wide character of the observed changes on a centennial timescale. The observed warming is consistent with climate model simulations over the 20th century, suggesting an attribution to anthropogenic forcing. Comparison with the pre-GAE cruises reveals no discernible warming between the 1870s and 1906/1911. © 2013 American Geophysical Union. All Rights Reserved

    Regional dynamic and steric sea level change in response to the IPCC-A 1B scenario

    No full text
    This paper analyzes regional sea level changes in a climate change simulation using the Max Planck Institute for Meteorology (MPI) coupled atmosphere–ocean general circulation model ECHAM5/MPI-OM. The climate change scenario builds on observed atmospheric greenhouse gas (GHG) concentrations from 1860 to 2000, followed by the International Panel on Climate Change (IPCC) A1B climate change scenario until 2100; from 2100 to 2199, GHG concentrations are fixed at the 2100 level. As compared with the unperturbed control climate, global sea level rises 0.26 m by 2100, and 0.56 m by 2199 through steric expansion; eustatic changes are not included in this simulation. The model’s sea level evolves substantially differently among ocean basins. Sea level rise is strongest in the Arctic Ocean, from enhanced freshwater input from precipitation and continental runoff, and weakest in the Southern Ocean, because of compensation of steric changes through dynamic sea surface height (SSH) adjustments. In the North Atlantic Ocean (NA), a complex tripole SSH pattern across the subtropical to subpolar gyre front evolves, which is consistent with a northward shift of the NA current. On interannual to decadal time scales, the SSH difference between Bermuda and the Labrador Sea correlates highly with the combined baroclinic gyre transport in the NA but only weakly with the meridional overturning circulation (MOC) and, thus, does not allow for estimates of the MOC on these time scales. Bottom pressure increases over shelf areas by up to 0.45 m (water column equivalent) and decreases over the Atlantic section in the Southern Ocean by up to 0.20 m. The separate evaluation of thermosteric and halosteric sea level changes shows that thermosteric anomalies are positive over most of the World Ocean. Because of increased atmospheric moisture transport from low to high latitudes, halosteric anomalies are negative in the subtropical NA and partly compensate thermosteric anomalies, but are positive in the Arctic Ocean and add to thermosteric anomalies. The vertical distribution of thermosteric and halosteric anomalies is highly nonuniform among ocean basins, reaching deeper than 3000 m in the Southern Ocean, down to 2200 m in the North Atlantic, and only to depths of 500 m in the Pacific Ocean by the end of the twenty-first century

    Effects of large volcanic eruptions on global summer climate and east asian monsoon changes during the last millennium: Analysis of MPI-ESM simulations

    No full text
    Responses of summer [June-August (JJA)] temperature and precipitation to large volcanic eruptions are analyzed using the millennial simulations of the earth system model developed at the Max Planck Institute for Meteorology. The model was driven by up-to-date reconstructions of external forcing, including natural forcing (solar and volcanic) and anthropogenic forcing (land-cover change and greenhouse gases). Cooling anomalies after large volcanic eruptions are seen on a nearly global scale. The cooling in the Northern Hemisphere (NH) is stronger than in the Southern Hemisphere (SH), and cooling is stronger over the continents than over the oceans. The precipitation decreases in the tropical and subtropical regions in the first summer after large volcanic eruptions. The cooling, with amplitudes of up to -0.6°C, is also seen over eastern China. East Asia is dominated by northerly wind anomalies, and the corresponding summer rainfall exhibits a coherent reduction over the entirety of eastern China. The tropospheric mean temperature anomalies indicate that there is coherent cooling over East Asia and the tropical ocean after large volcanic eruptions. The cooling over the middle-to-high latitudes of East Asia is stronger than over the tropical ocean. This temperature anomaly pattern suggests a reduced land-sea thermal contrast and favors a weaker East Asian summer monsoon (EASM) circulation. Analysis of the radiative fluxes at the top of the atmosphere (TOA) suggests that the reduction in shortwave radiation after large volcanic eruptions is nearly twice as large as the reduction in emitted longwave radiation, a net loss of radiative energy that cools the surface and lower tropospher

    Ocean bottom pressure changes lead to a decreasing length-of-day in a warming climate

    Get PDF
    We use a coupled climate model to evaluate ocean bottom pressure changes in the IPCC-A1B climate scenario. Ocean warming in the 21st and 22nd centuries causes secular oceanic bottom pressure anomalies. The essential feature is a net mass transfer onto shallow shelf areas from the deeper ocean areas, which exhibit negative bottom pressure anomalies. We develop a simple mass redistribution model that explains this mechanism. Regionally, however, distinct patterns of bottom pressure anomalies emerge due to spatially inhomogeneous warming and ocean circulation changes. Most prominently, the Arctic Ocean shelves experience an above-average bottom pressure increase. We find a net transfer of mass from the Southern to the Northern Hemisphere, and a net movement of mass closer towards Earth's axis of rotation. Thus, ocean warming and the ensuing mass redistribution change the length-of-day by -0.12 ms within 200 years, demonstrating that the oceans are capable of exciting nontidal length-of-day changes on decadal and longer timescales

    On-line and off-line data assimilation in palaeoclimatology: a case study

    No full text
    Different ensemble-based data assimilation (DA) approaches for palaeoclimate reconstructions have been recently undertaken, but no systematic comparison among them has been attempted. We compare an off-line and an on-line ensemble-based method, with the testing period being the 17th century, which led into the Maunder Minimum. We use a low-resolution version of Max Planck Institute for Meteorology Earth System Model (MPI-ESM) to assimilate the Past Global Changes (PAGES) 2k continental temperature reconstructions. In the off-line approach, the ensemble for the entire simulation period is generated first and then the ensemble is used in combination with the empirical information to produce the analysis. In contrast, in the on-line approach, the ensembles are generated sequentially for sub-periods based on the analysis of previous sub-periods. Both schemes perform better than the simulations without DA. The on-line method would be expected to perform better if the assimilation led to states of the slow components of the climate system that are close to reality and the system had sufficient memory to propagate this information forward in time. In our comparison, which is based on analysing correlations and differences between the analysis and the proxy-based reconstructions, we find similar skill for both methods on the continental and hemispheric scales. This indicates either a lack of control of the slow components in our setup or a lack of skill in the information propagation on decadal timescales. Additional experiments are however needed to check whether the conclusions reached in this particular setup are valid in other cases. Although the performance of the two schemes is similar and the on-line method is more difficult to implement, the temporal consistency of the analysis in the on-line method makes it in general preferable
    corecore