1,042 research outputs found

    Pairing-excitation versus intruder states in 68Ni and 90Zr

    Full text link
    A discussion on the nature of the 0+ states in 68Ni (Z=28, N=40) is presented and a comparison is made with its valence counterpart 90Zr (Z=40, N=50). Evidence is given for a 0+ proton intruder state at only ~2.2 MeV excitation energy in 68Ni, while the analogous neutron intruder states in 90Zr reside at 4126 keV and 5441 keV. The application of a shell-model description of 0+ intruder states reveals that many pair-scattered neutrons across N=40 have to be involved to explain the low excitation energy of the proton-intruder configuration in 68Ni.Comment: 10 pages, 2 figures, 1 tabl

    A strong form of the Quantitative Isoperimetric inequality

    Full text link
    We give a refinement of the quantitative isoperimetric inequality. We prove that the isoperimetric gap controls not only the Fraenkel asymmetry but also the oscillation of the boundary

    Neutron-skin thickness of 208^{208}Pb, and symmetry-energy constraints from the study of the anti-analog giant dipole resonance

    Full text link
    The 208^{208}Pb(pp,nγpˉn\gamma\bar p) 207^{207}Pb reaction at a beam energy of 30 MeV has been used to excite the anti-analog of the giant dipole resonance (AGDR) and to measure its γ\gamma-decay to the isobaric analog state in coincidence with proton decay of IAS. The energy of the transition has also been calculated with the self-consistent relativistic random-phase approximation (RRPA), and found to be linearly correlated to the predicted value of the neutron-skin thickness (ΔRpn\Delta R_{pn}). By comparing the theoretical results with the measured transition energy, the value of 0.190 ±\pm 0.028 fm has been determined for ΔRpn\Delta R_{pn} of 208^{208}Pb, in agreement with previous experimental results. The AGDR excitation energy has also been used to calculate the symmetry energy at saturation (J=32.7±0.6J=32.7 \pm 0.6 MeV) and the slope of the symmetry energy (L=49.7±4.4L=49.7 \pm 4.4 MeV), resulting in more stringent constraints than most of the previous studies.Comment: 6 pages, 5 figures. arXiv admin note: text overlap with arXiv:1205.232

    Global transcriptome analysis reveals circadian regulation of key pathways in plant growth and development

    Get PDF
    Transcript abundance of roughly a third of expressed Arabidopsis thaliana genes is circadian-regulated

    Particle number concentrations over Europe in 2030: the role of emissions and new particle formation

    Get PDF
    The aerosol particle number concentration is a key parameter when estimating impacts of aerosol particles on climate and human health. We use a three-dimensional chemical transport model with detailed microphysics, PMCAMx-UF, to simulate particle number concentrations over Europe in the year 2030, by applying emission scenarios for trace gases and primary aerosols. The scenarios are based on expected changes in anthropogenic emissions of sulfur dioxide, ammonia, nitrogen oxides, and primary aerosol particles with a diameter less than 2.5 μm (PM2.5) focusing on a photochemically active period, and the implications for other seasons are discussed. For the baseline scenario, which represents a best estimate of the evolution of anthropogenic emissions in Europe, PMCAMx-UF predicts that the total particle number concentration (Ntot) will decrease by 30–70% between 2008 and 2030. The number concentration of particles larger than 100 nm (N100), a proxy for cloud condensation nuclei (CCN) concentration, is predicted to decrease by 40–70% during the same period. The predicted decrease in Ntot is mainly a result of reduced new particle formation due to the expected reduction in SO2 emissions, whereas the predicted decrease in N100 is a result of both decreasing condensational growth and reduced primary aerosol emissions. For larger emission reductions, PMCAMx-UF predicts reductions of 60–80% in both Ntot and N100 over Europe. Sensitivity tests reveal that a reduction in SO2 emissions is far more efficient than any other emission reduction investigated, in reducing Ntot. For N100, emission reductions of both SO2 and PM2.5 contribute significantly to the reduced concentration, even though SO2 plays the dominant role once more. The impact of SO2 for both new particle formation and growth over Europe may be expected to be somewhat higher during the simulated period with high photochemical activity than during times of the year with less incoming solar radiation. The predicted reductions in both Ntot and N100 between 2008 and 2030 in this study will likely reduce both the aerosol direct and indirect effects, and limit the damaging effects of aerosol particles on human health in Europe

    First observation of excited states in 173Hg

    Full text link
    The neutron-deficient nucleus 173Hg has been studied following fusion-evaporation reactions. The observation of gamma rays decaying from excited states are reported for the first time and a tentative level scheme is proposed. The proposed level scheme is discussed within the context of the systematics of neighbouring neutron-deficient Hg nuclei. In addition to the gamma-ray spectroscopy, the alpha decay of this nucleus has been measured yielding superior precision to earlier measurements.Comment: 5 pages, 4 figure

    Changes in Menopausal Risk Factors in Early Postmenopausal Osteopenic Women After 13 Months of High-Intensity Exercise: The Randomized Controlled ACTLIFE-RCT.

    Get PDF
    The menopausal transition is a critical period in women’s lives. Exercise might be the most promising non-pharmaceutic intervention to address the large variety of risk factors related to the pronounced estradiol decline during peri- and early-postmenopause. The aim of this study was to determine the effect of an 18-month multipurpose exercise program on risk factors and symptoms related to the menopausal transition. Fifty-four women 1– 5 years postmenopause with osteopenia or osteoporosis were randomly assigned 1) to a high impact weight-bearing/high-intensity/velocity resistance training group (EG: n=27) exercising three times a week or 2) to an attendance control group (CG: n=27) that performed low-intensity exercise once a week. Both groups were supplemented with cholecalciferol and calcium. The primary study endpoint was bone mineral density (BMD) at lumbar spine (LS) and total hip, secondary outcomes were lean body mass (LBM), total and abdominal body percentage, metabolic syndrome Z-Score (MetS-Z), menopausal symptoms and muscle strength and power. Due to COVID-19, the study was stopped after 13 months. We observed significant effects for BMD-LS (EG: 0.002± .018 versus CG: − .009± 0.018 mg/cm2, p=0.027) but not for BMD total hip (EG: − 0.01± .016 versus CG: − .009± 0.020 mg/cm2, p=0.129). LBM improved significantly in the EG and decreased in the CG (0.39± 1.08 vs − 0.37± 1.34 kg, p=0.026). Total and abdominal body fat improved significantly in the EG and was maintained in the CG (− 1.44± 1.49 vs − 0.02± 1.55 kg, p=0.002 and -1.50± 2.33 vs 0.08± 2.07 kg, p=0.011). Significant effects in favor of the EG were also determined for menopausal symptoms (p=0.029), hip/leg extension strength (p< 0.001) and power (p< 0.001). However, changes of the MetS-Z did not differ significantly (p=0.149) between EG and CG. In summary, with minor exceptions, we demonstrated the effectiveness of a multipurpose exercise protocol dedicated to early-postmenopausal women on various risk factors and complaints related to the menopausal transition

    Native Environment Modulates Leaf Size and Response to Simulated Foliar Shade across Wild Tomato Species

    Get PDF
    The laminae of leaves optimize photosynthetic rates by serving as a platform for both light capture and gas exchange, while minimizing water losses associated with thermoregulation and transpiration. Many have speculated that plants maximize photosynthetic output and minimize associated costs through leaf size, complexity, and shape, but a unifying theory linking the plethora of observed leaf forms with the environment remains elusive. Additionally, the leaf itself is a plastic structure, responsive to its surroundings, further complicating the relationship. Despite extensive knowledge of the genetic mechanisms underlying angiosperm leaf development, little is known about how phenotypic plasticity and selective pressures converge to create the diversity of leaf shapes and sizes across lineages. Here, we use wild tomato accessions, collected from locales with diverse levels of foliar shade, temperature, and precipitation, as a model to assay the extent of shade avoidance in leaf traits and the degree to which these leaf traits correlate with environmental factors. We find that leaf size is correlated with measures of foliar shade across the wild tomato species sampled and that leaf size and serration correlate in a species-dependent fashion with temperature and precipitation. We use far-red induced changes in leaf length as a proxy measure of the shade avoidance response, and find that shade avoidance in leaves negatively correlates with the level of foliar shade recorded at the point of origin of an accession. The direction and magnitude of these correlations varies across the leaf series, suggesting that heterochronic and/or ontogenic programs are a mechanism by which selective pressures can alter leaf size and form. This study highlights the value of wild tomato accessions for studies of both morphological and light-regulated development of compound leaves, and promises to be useful in the future identification of genes regulating potentially adaptive plastic leaf traits

    Intruder bands and configuration mixing in the lead isotopes

    Full text link
    A three-configuration mixing calculation is performed in the context of the interacting boson model with the aim to describe recently observed collective bands built on low-lying 0+0^+ states in neutron-deficient lead isotopes. The configurations that are included correspond to the regular, spherical states as well as two-particle two-hole and four-particle four-hole excitations across the Z=82 shell gap.Comment: 20 pages, 4 figures, accepted by PRC, reference added for section 1 in this revised versio

    Study of J/ψJ/\psi and ψ(3686)→Σ(1385)0Σˉ(1385)0\psi(3686)\rightarrow\Sigma(1385)^{0}\bar\Sigma(1385)^{0} and Ξ0Ξˉ0\Xi^0\bar\Xi^{0}

    Full text link
    We study the decays of J/ψJ/\psi and ψ(3686)\psi(3686) to the final states Σ(1385)0Σˉ(1385)0\Sigma(1385)^{0}\bar\Sigma(1385)^{0} and Ξ0Ξˉ0\Xi^0\bar\Xi^{0} based on a single baryon tag method using data samples of (1310.6±7.0)×106(1310.6 \pm 7.0) \times 10^{6} J/ψJ/\psi and (447.9±2.9)×106(447.9 \pm 2.9) \times 10^{6} ψ(3686)\psi(3686) events collected with the BESIII detector at the BEPCII collider. The decays to Σ(1385)0Σˉ(1385)0\Sigma(1385)^{0}\bar\Sigma(1385)^{0} are observed for the first time. The measured branching fractions of J/ψJ/\psi and ψ(3686)→Ξ0Ξˉ0\psi(3686)\rightarrow\Xi^0\bar\Xi^{0} are in good agreement with, and much more precise, than the previously published results. The angular parameters for these decays are also measured for the first time. The measured angular decay parameter for J/ψ→Σ(1385)0Σˉ(1385)0J/\psi\rightarrow\Sigma(1385)^{0}\bar\Sigma(1385)^{0}, α=−0.64±0.03±0.10\alpha =-0.64 \pm 0.03 \pm 0.10, is found to be negative, different to the other decay processes in this measurement. In addition, the "12\% rule" and isospin symmetry in the J/ψJ/\psi and ψ(3686)→ΞΞˉ\psi(3686)\rightarrow\Xi\bar\Xi and Σ(1385)Σˉ(1385)\Sigma(1385)\bar{\Sigma}(1385) systems are tested.Comment: 11 pages, 7 figures. This version is consistent with paper published in Phys.Lett. B770 (2017) 217-22
    • …
    corecore