96 research outputs found

    Mating system drives negative associations between morphological features in Schistosomatidae

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sexual morphological features are known to be associated with the mating systems of several animal groups. However, it has been suggested that morphological features other than sexual characteristics could also be constrained by the mating system as a consequence of negative associations. <it>Schistosomatidae </it>are parasitic organisms that vary in mating system and can thus be used to explore links between the mating system and negative associations with morphological features.</p> <p>Results</p> <p>A comparative analysis of <it>Schistosomatidae </it>morphological features revealed an association between the mating system (monogamous <it>versus </it>polygynandrous) and morphological characteristics of reproduction, nutrition, and locomotion.</p> <p>Conclusions</p> <p>The mating system drives negative associations between somatic and sexual morphological features. In monogamous species, males display a lower investment in sexual tissues and a higher commitment of resources to tissues involved in female transport, protection, and feeding assistance. In contrast, males of polygynandrous species invest to a greater extent in sexual tissues at the cost of reduced commitment to female care.</p

    Whole-genome in-silico subtractive hybridization (WISH) - using massive sequencing for the identification of unique and repetitive sex-specific sequences: the example of Schistosoma mansoni

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Emerging methods of massive sequencing that allow for rapid re-sequencing of entire genomes at comparably low cost are changing the way biological questions are addressed in many domains. Here we propose a novel method to compare two genomes (genome-to-genome comparison). We used this method to identify sex-specific sequences of the human blood fluke <it>Schistosoma mansoni</it>.</p> <p>Results</p> <p>Genomic DNA was extracted from male and female (heterogametic) <it>S. mansoni </it>adults and sequenced with a Genome Analyzer (Illumina). Sequences are available at the NCBI sequence read archive <url>http://www.ncbi.nlm.nih.gov/Traces/sra/</url> under study accession number SRA012151.6. Sequencing reads were aligned to the genome, and a pseudogenome composed of known repeats. Straightforward comparative bioinformatics analysis was performed to compare male and female schistosome genomes and identify female-specific sequences. We found that the <it>S. mansoni </it>female W chromosome contains only few specific unique sequences (950 Kb i.e. about 0.2% of the genome). The majority of W-specific sequences are repeats (10.5 Mb i.e. about 2.5% of the genome). Arbitrarily selected W-specific sequences were confirmed by PCR. Primers designed for unique and repetitive sequences allowed to reliably identify the sex of both larval and adult stages of the parasite.</p> <p>Conclusion</p> <p>Our genome-to-genome comparison method that we call "whole-genome <it>in-silico </it>subtractive hybridization" (WISH) allows for rapid identification of sequences that are specific for a certain genotype (e.g. the heterogametic sex). It can in principle be used for the detection of any sequence differences between isolates (<it>e.g</it>. strains, pathovars) or even closely related species.</p

    Evidence for Specific Genotype-Dependent Immune Priming in the Lophotrochozoan Biomphalaria glabrata Snail.

    Get PDF
    International audienceHistorically, the prevailing view in the field of invertebrate immunity was that invertebrates that do not possess acquired adaptive immunity rely on innate mechanisms with low specificity and no memory. Several recent studies have shaken this paradigm and suggested that the immune defenses of invertebrates are more complex and specific than previously thought. Mounting evidence has shown that at least some invertebrates (mainly Ecdysozoa) show high levels of specificity in their immune responses to different pathogens, and that subsequent reexposure may result in enhanced protection (recently called 'immune priming'). Here, we investigated immune priming in the Lophotrochozoan snail species Biomphalaria glabrata, following infection by the trematode pathogen Schistosoma mansoni. We confirmed that snails were protected against a secondary homologous infection whatever the host strain. We then investigated how immune priming occurs and the level of specificity of B. glabrata immune priming. In this report we confirmed that immune priming exists and we identified a genotype-dependent immune priming in the fresh-water snail B. glabrata

    Chromatin structure changes around satellite repeats on the Schistosoma mansoni female sex chromosome suggest a possible mechanism for sex chromosome emergence.

    Get PDF
    International audienceBACKGROUND: In the leuphotrochozoan parasitic platyhelminth Schistosoma mansoni, male individuals are homogametic (ZZ) whereas females are heterogametic (ZW). To elucidate the mechanisms that led to the emergence of sex chromosomes we compared the genomic sequence and the chromatin structure of male and female individuals. As for many eukaryotes, the lower estimate for the repeat content is 40%, with an unknown proportion of domesticated repeats. We used massive sequencing to de novo assemble all repeats, and identify unambiguously Z-specific, W-specific and pseudoautosomal regions of the S. mansoni sex chromosomes.RESULTS: We show that 70-90 % of S. mansoni W and Z are pseudoautosomal. No female specific gene could be identified. Instead, the W-specific region is composed almost entirely of 36 satellite repeat families, of which 33 were previously unknown. Transcription and chromatin status of female specific repeats are stage specific: for those repeats that are transcribed, transcription is restricted to the larval stages lacking sexual dimorphism. In contrast, in the sexually dimorphic adult stage of the life cycle, no transcription occurs. In addition, the euchromatic character of histone modifications around the W-specific repeats decreases during the life cycle. Recombination repression occurs in this region even if homologous sequences are present on both the Z and W chromosomes.CONCLUSION: Our study provides for the first time evidence for the hypothesis that, at least in organisms with a ZW type of sex chromosomes, repeat-induced chromatin structure changes could indeed be the initial event in sex chromosome emergence

    A Shift from Cellular to Humoral Responses Contributes to Innate Immune Memory in the Vector Snail Biomphalaria glabrata

    Get PDF
    International audienceDiscoveries made over the past ten years have provided evidence that invertebrate anti-parasitic responses may be primed in a sustainable manner, leading to the failure of a secondary encounter with the same pathogen. This phenomenon called " immune priming " or "innate immune memory" was mainly phenomenological. The demonstration of this process remains to be obtained and the underlying mechanisms remain to be discovered and exhaustively tested with rigorous functional and molecular methods, to eliminate all alternative explanations. In order to achieve this ambitious aim, the present study focuses on the Lophotrochozoan snail, Biomphalaria glabrata, in which innate immune memory was recently reported. We provide herein the first evidence that a shift from a cellular immune response (encapsulation) to a humoral immune response (biomphalysin) occurs during the development of innate memory. The molecular characterisation of this process in Biompha-laria/Schistosoma system was undertaken to reconcile mechanisms with phenomena

    Biomphalysin, a new β pore-forming toxin involved in Biomphalaria glabrata immune defense against Schistosoma mansoni.

    Get PDF
    International audienceAerolysins are virulence factors belonging to the β pore-forming toxin (β-PFT) superfamily that are abundantly distributed in bacteria. More rarely, β-PFTs have been described in eukaryotic organisms. Recently, we identified a putative cytolytic protein in the snail, Biomphalaria glabrata, whose primary structural features suggest that it could belong to this β-PFT superfamily. In the present paper, we report the molecular cloning and functional characterization of this protein, which we call Biomphalysin, and demonstrate that it is indeed a new eukaryotic β-PFT. We show that, despite weak sequence similarities with aerolysins, Biomphalysin shares a common architecture with proteins belonging to this superfamily. A phylogenetic approach revealed that the gene encoding Biomphalysin could have resulted from horizontal transfer. Its expression is restricted to immune-competent cells and is not induced by parasite challenge. Recombinant Biomphalysin showed hemolytic activity that was greatly enhanced by the plasma compartment of B. glabrata. We further demonstrated that Biomphalysin with plasma is highly toxic toward Schistosoma mansoni sporocysts. Using in vitro binding assays in conjunction with Western blot and immunocytochemistry analyses, we also showed that Biomphalysin binds to parasite membranes. Finally, we showed that, in contrast to what has been reported for most other members of the family, lytic activity of Biomphalysin is not dependent on proteolytic processing. These results provide the first functional description of a mollusk immune effector protein involved in killing S. mansoni

    Antischistosomal Activity of Trioxaquines: In Vivo Efficacy and Mechanism of Action on Schistosoma mansoni

    Get PDF
    Schistosomiasis is among the most neglected tropical diseases, since its mode of spreading tends to limit the contamination to people who are in contact with contaminated waters in endemic countries. Here we report the in vitro and in vivo anti-schistosomal activities of trioxaquines. These hybrid molecules are highly active on the larval forms of the worms and exhibit different modes of action, not only the alkylation of heme. The synergy observed with praziquantel on infected mice is in favor of the development of these trioxaquines as potential anti-schistosomal agents

    Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease

    Get PDF
    Background: Experimental and clinical data suggest that reducing inflammation without affecting lipid levels may reduce the risk of cardiovascular disease. Yet, the inflammatory hypothesis of atherothrombosis has remained unproved. Methods: We conducted a randomized, double-blind trial of canakinumab, a therapeutic monoclonal antibody targeting interleukin-1β, involving 10,061 patients with previous myocardial infarction and a high-sensitivity C-reactive protein level of 2 mg or more per liter. The trial compared three doses of canakinumab (50 mg, 150 mg, and 300 mg, administered subcutaneously every 3 months) with placebo. The primary efficacy end point was nonfatal myocardial infarction, nonfatal stroke, or cardiovascular death. RESULTS: At 48 months, the median reduction from baseline in the high-sensitivity C-reactive protein level was 26 percentage points greater in the group that received the 50-mg dose of canakinumab, 37 percentage points greater in the 150-mg group, and 41 percentage points greater in the 300-mg group than in the placebo group. Canakinumab did not reduce lipid levels from baseline. At a median follow-up of 3.7 years, the incidence rate for the primary end point was 4.50 events per 100 person-years in the placebo group, 4.11 events per 100 person-years in the 50-mg group, 3.86 events per 100 person-years in the 150-mg group, and 3.90 events per 100 person-years in the 300-mg group. The hazard ratios as compared with placebo were as follows: in the 50-mg group, 0.93 (95% confidence interval [CI], 0.80 to 1.07; P = 0.30); in the 150-mg group, 0.85 (95% CI, 0.74 to 0.98; P = 0.021); and in the 300-mg group, 0.86 (95% CI, 0.75 to 0.99; P = 0.031). The 150-mg dose, but not the other doses, met the prespecified multiplicity-adjusted threshold for statistical significance for the primary end point and the secondary end point that additionally included hospitalization for unstable angina that led to urgent revascularization (hazard ratio vs. placebo, 0.83; 95% CI, 0.73 to 0.95; P = 0.005). Canakinumab was associated with a higher incidence of fatal infection than was placebo. There was no significant difference in all-cause mortality (hazard ratio for all canakinumab doses vs. placebo, 0.94; 95% CI, 0.83 to 1.06; P = 0.31). Conclusions: Antiinflammatory therapy targeting the interleukin-1β innate immunity pathway with canakinumab at a dose of 150 mg every 3 months led to a significantly lower rate of recurrent cardiovascular events than placebo, independent of lipid-level lowering. (Funded by Novartis; CANTOS ClinicalTrials.gov number, NCT01327846.
    corecore