1,009 research outputs found
Recommended from our members
Reporters of TCR signaling identify arthritogenic T cells in murine and human autoimmune arthritis.
How pathogenic cluster of differentiation 4 (CD4) T cells in rheumatoid arthritis (RA) develop remains poorly understood. We used Nur77-a marker of T cell antigen receptor (TCR) signaling-to identify antigen-activated CD4 T cells in the SKG mouse model of autoimmune arthritis and in patients with RA. Using a fluorescent reporter of Nur77 expression in SKG mice, we found that higher levels of Nur77-eGFP in SKG CD4 T cells marked their autoreactivity, arthritogenic potential, and ability to more readily differentiate into interleukin-17 (IL-17)-producing cells. The T cells with increased autoreactivity, nonetheless had diminished ex vivo inducible TCR signaling, perhaps reflective of adaptive inhibitory mechanisms induced by chronic autoantigen exposure in vivo. The enhanced autoreactivity was associated with up-regulation of IL-6 cytokine signaling machinery, which might be attributable, in part, to a reduced amount of expression of suppressor of cytokine signaling 3 (SOCS3)-a key negative regulator of IL-6 signaling. As a result, the more autoreactive GFPhi CD4 T cells from SKGNur mice were hyperresponsive to IL-6 receptor signaling. Consistent with findings from SKGNur mice, SOCS3 expression was similarly down-regulated in RA synovium. This suggests that despite impaired TCR signaling, autoreactive T cells exposed to chronic antigen stimulation exhibit heightened sensitivity to IL-6, which contributes to the arthritogenicity in SKG mice, and perhaps in patients with RA
Ex vivo MRI facilitates localization of cerebral microbleeds of different ages during neuropathology assessment
Cerebral microbleeds (CMBs) identified by in vivo magnetic resonance imaging (MRI) of brains of older persons may have clinical relevance due to their association with cognitive impairment and other adverse neurologic outcomes, but are often not detected in routine neuropathology evaluations. In this study, the utility of ex vivo MRI in the neuropathological identification, localization, and frequency of CMBs was investigated. The study included 3 community dwelling elders with Alzheimerâs dementia, and mild to severe small vessel disease (SVD). Ex vivo MRI was performed on the fixed hemisphere to identify CMBs, blinded to the neuropathology diagnoses. The hemibrains were then sliced at 1 cm intervals and 2, 1 or 0 microhemorrhages (MH) were detected on the cut surfaces of brain slabs using the routine neuropathology protocol. Ex vivo imaging detected 15, 14 and 9 possible CMBs in cases 1, 2 and 3, respectively. To obtain histological confirmation of the CMBs detected by ex vivo MRI, the 1 cm brain slabs were dissected further and MHs or areas corresponding to the CMBs detected by ex vivo MRI were blocked and serially sectioned at 6 Âľm intervals. Macroscopic examination followed by microscopy post ex vivo MRI resulted in detection of 35 MHs and therefore, about 12 times as many MHs were detected compared to routine neuropathology assessment without ex vivo MRI. While microscopy identified previously unrecognized chronic MHs, it also showed that MHs were acute or subacute and therefore may represent perimortem events. Ex vivo MRI detected CMBs not otherwise identified on routine neuropathological examination of brains of older persons and histologic evaluation of the CMBs is necessary to determine the age and clinical relevance of each hemorrhage
Recommended from our members
Catalase Prevents Maternal DiabetesâInduced Perinatal Programming via the Nrf2âHO-1 Defense System
We investigated whether overexpression of catalase (CAT) in renal proximal tubular cells (RPTCs) could prevent the programming of hypertension and kidney disease in the offspring of dams with maternal diabetes. Male offspring of nondiabetic and diabetic dams from two transgenic (Tg) lines (Hoxb7-green fluorescent protein [GFP]-Tg [controls] and Hoxb7/CAT-GFP-Tg, which overexpress CAT in RPTCs) were studied from the prenatal period into adulthood. Nephrogenesis, systolic blood pressure, renal hyperfiltration, kidney injury, and reactive oxygen species (ROS) generation were assessed. Gene expression of transforming growth factor-β1 (TGF-β1), nuclear factor erythroid 2p45ârelated factor-2 (Nrf2), and heme oxygenase-1 (HO-1) was tested in both in vitro and in vivo studies. Renal dysmorphogenesis was observed in offspring of Hoxb7-GFP-Tg dams with severe maternal diabetes; the affected male offspring displayed higher renal ROS generation and developed hypertension and renal hyperfiltration as well as renal injury with heightened TGF-β1 expression in adulthood. These changes were ameliorated in male offspring of diabetic Hoxb7/CAT-GFP-Tg dams via the Nrf2âHO-1 defense system. CAT promoted Nrf2 nuclear translocation and HO-1 gene expression, seen in both in vitro and in vivo studies. In conclusion, CAT overexpression in the RPTCs ameliorated maternal diabetesâinduced perinatal programming, mediated, at least in part, by triggering the Nrf2âHO-1 defense system
QTL mapping and candidate gene analysis of ferrous iron and zinc toxicity tolerance at seedling stage in rice by genome-wide association study
Background:Ferrous iron (Fe) and zinc (Zn) at high concentration in the soil cause heavy metal toxicity andgreatly affect rice yield and quality. To improve rice production, understanding the genetic and molecularresistance mechanisms to excess Fe and Zn in rice is essential. Genome-wide association study (GWAS) is aneffective way to identify loci and favorable alleles governing Fe and Zn toxicty as well as dissect the geneticrelationship between them in a genetically diverse population.Results:A total of 29 and 31 putative QTL affecting shoot height (SH), root length (RL), shoot fresh weight (SFW),shoot dry weight (SDW), root dry weight (RDW), shoot water content (SWC) and shoot ion concentrations (SFe orSZn) were identified at seedling stage in Fe and Zn experiments, respectively. Five toxicity tolerance QTL (qSdw3a,qSdw3b,qSdw12andqSFe5/qSZn5) were detected in the same genomic regions under the two stress conditionsand 22 candidate genes for 10 important QTL regions were also determined by haplotype analyses.Conclusion:Rice plants share partial genetic overlaps of Fe and Zn toxicity tolerance at seedling stage. Candidategenes putatively affecting Fe and Zn toxicity tolerance identified in this study provide valuable information forfuture functional characterization and improvement of rice tolerance to Fe and Zn toxicity by marker-assistedselection or designed QTL pyramiding
Recommended from our members
The MBD7 complex promotes expression of methylated transgenes without significantly altering their methylation status.
DNA methylation is associated with gene silencing in eukaryotic organisms. Although pathways controlling the establishment, maintenance and removal of DNA methylation are known, relatively little is understood about how DNA methylation influences gene expression. Here we identified a METHYL-CpG-BINDING DOMAIN 7 (MBD7) complex in Arabidopsis thaliana that suppresses the transcriptional silencing of two LUCIFERASE (LUC) reporters via a mechanism that is largely downstream of DNA methylation. Although mutations in components of the MBD7 complex resulted in modest increases in DNA methylation concomitant with decreased LUC expression, we found that these hyper-methylation and gene expression phenotypes can be genetically uncoupled. This finding, along with genome-wide profiling experiments showing minimal changes in DNA methylation upon disruption of the MBD7 complex, places the MBD7 complex amongst a small number of factors acting downstream of DNA methylation. This complex, however, is unique as it functions to suppress, rather than enforce, DNA methylation-mediated gene silencing
CHILES: HI morphology and galaxy environment at z=0.12 and z=0.17
We present a study of 16 HI-detected galaxies found in 178 hours of
observations from Epoch 1 of the COSMOS HI Large Extragalactic Survey (CHILES).
We focus on two redshift ranges between 0.108 <= z <= 0.127 and 0.162 <= z <=
0.183 which are among the worst affected by radio frequency interference (RFI).
While this represents only 10% of the total frequency coverage and 18% of the
total expected time on source compared to what will be the full CHILES survey,
we demonstrate that our data reduction pipeline recovers high quality data even
in regions severely impacted by RFI. We report on our in-depth testing of an
automated spectral line source finder to produce HI total intensity maps which
we present side-by-side with significance maps to evaluate the reliability of
the morphology recovered by the source finder. We recommend that this become a
common place manner of presenting data from upcoming HI surveys of resolved
objects. We use the COSMOS 20k group catalogue, and we extract filamentary
structure using the topological DisPerSE algorithm to evaluate the \hi\
morphology in the context of both local and large-scale environments and we
discuss the shortcomings of both methods. Many of the detections show disturbed
HI morphologies suggesting they have undergone a recent interaction which is
not evident from deep optical imaging alone. Overall, the sample showcases the
broad range of ways in which galaxies interact with their environment. This is
a first look at the population of galaxies and their local and large-scale
environments observed in HI by CHILES at redshifts beyond the z=0.1 Universe.Comment: 23 pages, 12 figures, 1 interactive 3D figure, accepted to MNRA
Osteocalcin signaling in myofibers is necessary and sufficient for optimum adaptation to exercise
Circulating levels of undercarboxylated and bioactive osteocalcin double during aerobic exercise at the time levels of insulin decrease. In contrast, circulating levels of osteocalcin plummet early during adulthood in mice, monkeys, and humans of both genders. Exploring these observations revealed that osteocalcin signaling in myofibers is necessary for adaptation to exercise by favoring uptake and catabolism of glucose and fatty acids, the main nutrients of myofibers. Osteocalcin signaling in myofibers also accounts for most of the exercise-induced release of interleukin-6, a myokine that promotes adaptation to exercise in part by driving the generation of bioactive osteocalcin. We further show that exogenous osteocalcin is sufficient to enhance the exercise capacity of young mice and to restore to 15-month-old mice the exercise capacity of 3-month-old mice. This study uncovers a bone-to-muscle feedforward endocrine axis that favors adaptation to exercise and can reverse the age-induced decline in exercise capacity
Assay precision and risk of misclassification at rule-out cut-offs for high-sensitivity cardiac troponin
Clinical trials and guidelines support the use of very low high-sensitivity cardiac troponin (hs-cTn) results to rule-out a myocardial infarction (MI) ( 1) ). The International Federation of Clinical Chemistry and Laboratory Medicine Committee on Clinical Applications of Cardiac Biomarkers committee, through a modeling approach, suggests assays need to have a lower limit near 3 ng/L and an analytical variation of 10% below 7 ng/L if these low values are to perform consistently in practice ( 2) ). Our objectives for the present study were to assess: i) if any type of instrument or individual instrument could achieve a coefficient of variation (CV) of â¤10% at very low hs-cTn cut-offs (i.e., targets) recommended in clinical pathways; ii) the frequency of results at the hs-cTn target, above the target and below the target, with the latter group representing potential misclassification to the low risk group where the target level would in the intermediate risk range.<br/
Introgression of Aegilops speltoides segments in Triticum aestivum and the effect of the gametocidal genes
⢠Background and Aims Bread wheat (Triticum aestivum) has been through a severe genetic bottleneck as a result of its evolution and domestication. It is therefore essential that new sources of genetic variation are generated and utilized. This study aimed to generate genome-wide introgressed segments from Aegilops speltoides. Introgressions generated from this research will be made available for phenotypic analysis.
⢠Methods Aegilops speltoides was crossed as the male parent to T. aestivum âParagonâ. The interspecific hybrids were then backcrossed to Paragon. Introgressions were detected and characterized using the Affymetrix Axiom Array and genomic in situ hybridization (GISH).
⢠Key Results Recombination in the gametes of the Fâ hybrids was at a level where it was possible to generate a genetic linkage map of Ae. speltoides. This was used to identify 294 wheat/Ae. speltoides introgressions. Introgressions from all seven linkage groups of Ae. speltoides were found, including both large and small segments. Comparative analysis showed that overall macro-synteny is conserved between Ae. speltoides and T. aestivum, but that Ae. speltoides does not contain the 4A/5A/7B translocations present in wheat. Aegilops speltoides has been reported to carry gametocidal genes, i.e. genes that ensure their transmission through the gametes to the next generation. Transmission rates of the seven Ae. speltoides linkage groups introgressed into wheat varied. A 100 % transmission rate of linkage group 2 demonstrates the presence of the gametocidal genes on this chromosome.
⢠Conclusions A high level of recombination occurs between the chromosomes of wheat and Ae. speltoides, leading to the generation of large numbers of introgressions with the potential for exploitation in breeding programmes. Due to the gametocidal genes, all germplasm developed will always contain a segment from Ae. speltoides linkage group 2S, in addition to an introgression from any other linkage group
X-Box Binding Protein 1 Is Essential for the Anti-Oxidant Defense and Cell Survival in the Retinal Pigment Epithelium
Damage to the retinal pigment epithelium (RPE) is an early event in the pathogenesis of age-related macular degeneration (AMD). X-box binding protein 1 (XBP1) is a key transcription factor that regulates endoplasmic reticulum (ER) homeostasis and cell survival. This study aimed to delineate the role of endogenous XBP1 in the RPE. Our results show that in a rat model of light-induced retinal degeneration, XBP1 activation was suppressed in the RPE/choroid complex, accompanied by decreased anti-oxidant genes and increased oxidative stress. Knockdown of XBP1 by siRNA resulted in reduced expression of SOD1, SOD2, catalase, and glutathione synthase and sensitized RPE cells to oxidative damage. Using Cre/LoxP system, we generated a mouse line that lacks XBP1 only in RPE cells. Compared to wildtype littermates, RPE-XBP1 KO mice expressed less SOD1, SOD2, and catalase in the RPE, and had increased oxidative stress. At age 3 months and older, these mice exhibited apoptosis of RPE cells, decreased number of cone photoreceptors, shortened photoreceptor outer segment, reduced ONL thickness, and deficit in retinal function. Electron microscopy showed abnormal ultrastructure, Bruch's membrane thickening, and disrupted basal membrane infolding in XBP1-deficient RPE. These results indicate that XBP1 is an important gene involved in regulation of the anti-oxidant defense in the RPE, and that impaired activation of XBP1 may contribute to RPE dysfunction and cell death during retinal degeneration and AMD
- âŚ