84 research outputs found

    Towards Useful Decadal Climate Services

    Get PDF
    The decadal time scale (∼1–10 years) bridges the gap between seasonal predictions and longer-term climate projections. It is a key planning time scale for users in many sectors as they seek to adapt to our rapidly changing climate. While significant advances in using initialized climate models to make skillful decadal predictions have been made in the last decades, including coordinated international experiments and multimodel forecast exchanges, few user-focused decadal climate services have been developed. Here we highlight the potential of decadal climate services using four case studies from a project led by four institutions that produce real-time decadal climate predictions. Working in co-development with users in agriculture, energy, infrastructure, and insurance sectors, four prototype climate service products were developed. This study describes the challenge of trying to match user needs with the current scientific capability. For example, the use of large ensembles (achieved via a multisystem approach) and skillfully predicted large-scale environmental conditions, are found to improve regional predictions, particularly in midlatitudes. For each climate service, a two-page “product sheet” template was developed that provides users with both a concise probabilistic forecast and information on retrospective performance. We describe the development cycle, where valuable feedback was obtained from a “showcase event” where a wider group of sector users were engaged. We conclude that for society to take full and rapid advantage of useful decadal climate services, easier and more timely access to decadal climate prediction data are required, along with building wider community expertise in their use.This study received support from the C3S_34c contract (ECMWF/COPERNICUS/2019/C3S_34c_DWD) of the Copernicus Climate Change Service (C3S) operated by ECMWF. DS, AS, and HT were supported by the Met Office Hadley Centre Climate Programme funded by BEIS and Defra. AP, KP, and BF were funded by the Deutscher Wetterdienst.Peer Reviewed"Article signat per 22 autors/es: Nick Dunstone, Julia Lockwood, Balakrishnan Solaraju-Murali, Katja Reinhardt, Eirini E. Tsartsali, Panos J. Athanasiadis, Alessio Bellucci, Anca Brookshaw, Louis-Philippe Caron, Francisco J. Doblas-Reyes, Barbara Früh, Nube González-Reviriego, Silvio Gualdi, Leon Hermanson, Stefano Materia, Andria Nicodemou, Dario Nicolì, Klaus Pankatz, Andreas Paxian, Adam Scaife, Doug Smith, and Hazel E. Thornton"Postprint (published version

    The Undergraduate Training in Genomics (UTRIG) Initiative: Early & Active Training for Physicians in the Genomic Medicine Era

    Get PDF
    Genomic medicine is transforming patient care. However, the speed of development has left a knowledge gap between discovery and effective implementation into clinical practice. Since 2010, the Training Residents in Genomics (TRIG) Working Group has found success in building a rigorous genomics curriculum with implementation tools aimed at pathology residents in postgraduate training years 1-4. Based on the TRIG model, the interprofessional Undergraduate Training in Genomics (UTRIG) Working Group was formed. Under the aegis of the Undergraduate Medical Educators Section of the Association of Pathology Chairs and representation from nine additional professional societies, UTRIG\u27s collaborative goal is building medical student genomic literacy through development of a ready-to-use genomics curriculum. Key elements to the UTRIG curriculum are expert consensus-driven objectives, active learning methods, rigorous assessment and integration

    eXtreme Adaptive Optics Planet Imager: overview and status

    Get PDF
    As adaptive optics (AO) matures, it becomes possible to envision AO systems oriented towards specific important scientific goals rather than general-purpose systems. One such goal for the next decade is the direct imaging detection of extrasolar planets. An "extreme" adaptive optics (ExAO) system optimized for extrasolar planet detection will have very high actuator counts and rapid update rates - designed for observations of bright stars - and will require exquisite internal calibration at the nanometer level. In addition to extrasolar planet detection, such a system will be capable of characterizing dust disks around young or mature stars, outflows from evolved stars, and high Strehl ratio imaging even at visible wavelengths. The NSF Center for Adaptive Optics has carried out a detailed conceptual design study for such an instrument, dubbed the eXtreme Adaptive Optics Planet Imager or XAOPI. XAOPI is a 4096-actuator AO system, notionally for the Keck telescope, capable of achieving contrast ratios >10^7 at angular separations of 0.2-1". ExAO system performance analysis is quite different than conventional AO systems - the spatial and temporal frequency content of wavefront error sources is as critical as their magnitude. We present here an overview of the XAOPI project, and an error budget highlighting the key areas determining achievable contrast. The most challenging requirement is for residual static errors to be less than 2 nm over the controlled range of spatial frequencies. If this can be achieved, direct imaging of extrasolar planets will be feasible within this decade

    eXtreme Adaptive Optics Planet Imager: overview and status

    Get PDF
    As adaptive optics (AO) matures, it becomes possible to envision AO systems oriented towards specific important scientific goals rather than general-purpose systems. One such goal for the next decade is the direct imaging detection of extrasolar planets. An "extreme" adaptive optics (ExAO) system optimized for extrasolar planet detection will have very high actuator counts and rapid update rates - designed for observations of bright stars - and will require exquisite internal calibration at the nanometer level. In addition to extrasolar planet detection, such a system will be capable of characterizing dust disks around young or mature stars, outflows from evolved stars, and high Strehl ratio imaging even at visible wavelengths. The NSF Center for Adaptive Optics has carried out a detailed conceptual design study for such an instrument, dubbed the eXtreme Adaptive Optics Planet Imager or XAOPI. XAOPI is a 4096-actuator AO system, notionally for the Keck telescope, capable of achieving contrast ratios >10^7 at angular separations of 0.2-1". ExAO system performance analysis is quite different than conventional AO systems - the spatial and temporal frequency content of wavefront error sources is as critical as their magnitude. We present here an overview of the XAOPI project, and an error budget highlighting the key areas determining achievable contrast. The most challenging requirement is for residual static errors to be less than 2 nm over the controlled range of spatial frequencies. If this can be achieved, direct imaging of extrasolar planets will be feasible within this decade

    Effects of variable magma supply on mid-ocean ridge eruptions : constraints from mapped lava flow fields along the Galápagos Spreading Center

    Get PDF
    Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 13 (2012): Q08014, doi:10.1029/2012GC004163.Mapping and sampling of 18 eruptive units in two study areas along the Galápagos Spreading Center (GSC) provide insight into how magma supply affects mid-ocean ridge (MOR) volcanic eruptions. The two study areas have similar spreading rates (53 versus 55 mm/yr), but differ by 30% in the time-averaged rate of magma supply (0.3 × 106 versus 0.4 × 106 m3/yr/km). Detailed geologic maps of each study area incorporate observations of flow contacts and sediment thickness, in addition to sample petrology, geomagnetic paleointensity, and inferences from high-resolution bathymetry data. At the lower-magma-supply study area, eruptions typically produce irregularly shaped clusters of pillow mounds with total eruptive volumes ranging from 0.09 to 1.3 km3. At the higher-magma-supply study area, lava morphologies characteristic of higher effusion rates are more common, eruptions typically occur along elongated fissures, and eruptive volumes are an order of magnitude smaller (0.002–0.13 km3). At this site, glass MgO contents (2.7–8.4 wt. %) and corresponding liquidus temperatures are lower on average, and more variable, than those at the lower-magma-supply study area (6.2–9.1 wt. % MgO). The differences in eruptive volume, lava temperature, morphology, and inferred eruption rates observed between the two areas along the GSC are similar to those that have previously been related to variable spreading rates on the global MOR system. Importantly, the documentation of multiple sequences of eruptions at each study area, representing hundreds to thousands of years, provides constraints on the variability in eruptive style at a given magma supply and spreading rate.This work was supported by the National Science Foundation grants OCE08–49813, OCE08–50052, and OCE08– 49711.2013-02-2
    corecore