112 research outputs found

    New evidence on state dependence in unemployment histories

    Get PDF
    Using administrative data records from the Spanish Employment Agency we examine whether or not there is evidence of state dependence in unemployment under benefits in Spanish young workers. For this fact, we use a mixed proportional hazard model that allows for state dependence through lagged duration dependence in order to disentangle the effects of unobserved individual heterogeneity and the true state dependence. We have found evidence that past unemployment experience and unobserved individual components affect the experience of longer future unemployment spells under benefits. However, we appreciate in workers with completed past unemployment spells that the correlation between the duration of succesive unemployment spells is only due to the unobserved components across individuals. Besides, we observe that workers in their second unemployment experience under benefits present higher hazard rates that in their first unemployment experience under benefits.state dependence, unemployment benefits, mixed proportional hazard models, unobserved heterogeneity

    Bisphosphonate-related osteonecrosis. Application of adipose-derived stem cells in an experimental murine model

    Get PDF
    Bisphosphonate-related osteonecrosis of the jaw is a pathological condition without effective established treatment and preventive strategies. The aim of this study was to analyse the effect of adipose-derived stem cells (ASC) in an experimental murine model of osteonecrosis. 38 Wistar rats were injected intraperitoneally with zoledronic acid. After treatment, upper jaw molars were extracted. The animals were randomly assigned to one of two groups. In the control group, saline solution was applied over the alveolar sockets after the tooth extractions. In the treatment group, ASCs were applied instead of saline solution. The control and treatment groups were subdivided based on the time of euthanasia. A clinical and histological analysis was performed. The presence of osteonecrosis in alveolar bone was observed in a similar distribution in both groups. In the ASC-treated group, new bone formation was greater than in controls. In this study, application of ASCs showed greater new bone formation in an osteonecrosis-like murine model. Previous inhibited post-extraction bone remodelling could be reactivated, and these findings appeared to be secondary to implantation of ASCs

    De novo erythroleukemia chromosome features include multiple rearrangements, with special involvement of chromosomes 11 and 19

    Get PDF
    Erythroid leukemia (ERL or AML-M6) is an uncommon subtype of acute myeloid leukemia, the clinical, morphological, and genetic behavior of which needs further characterization. We analyzed a homogeneous group of 23 de novo AML-M6 patients whose bone marrow cells showed complex karyotypes. We also analyzed eight leukemia cell lines with erythroid phenotype, performing detailed molecular cytogenetic analyses, including spectral karyotyping (SKY) in all samples. The main features are: (1) A majority of patients (56%) had hypodiploidy. Loss of genetic material was the most common genetic change, especially monosomies of chromosome 7 or 18, and deletions of chromosome arm 5q. Taken together, 87% of the cases displayed aberrations involving chromosome 5 or 8. (2) We describe a novel, cryptic, and recurrent translocation, t(11;19)(p11.2;q13.1). Another translocation, t(12;21)(p11.2;q11.2), was found to be recurrent in a patient with ERL and in the K562 cell line. (3) MLL gene rearrangements were detected in 20% of cases (three translocations and three amplifications) and, overall, we defined 52 rearrangements (excluding deletions) with a mean of 2.3 translocations per patient. (4) Of the structural aberrations, 21% involved chromosomes 11 and 19. Most of the rearrangements were unbalanced; only 13 reciprocal translocations were observed. The general picture of chromosomal aberrations in cell lines did not reflect what occurred in patient samples. However, both primary samples and cell lines shared three common breakpoints at 19q13.1, 20q11.2, and 21q11.2. This is the first molecular cytogenetic description of the karyotype abnormalities present in patients with ERL. It should assist in the identification of genes involved in erythroleukemogenesis

    Role of Innate and Adaptive Cytokines in the Survival of COVID-19 Patients

    Get PDF
    SARS-CoV-2 is a new coronavirus characterized by a high infection and transmission capacity. A significant number of patients develop inadequate immune responses that produce massive releases of cytokines that compromise their survival. Soluble factors are clinically and pathologically relevant in COVID-19 survival but remain only partially characterized. The objective of this work was to simultaneously study 62 circulating soluble factors, including innate and adaptive cytokines and their soluble receptors, chemokines and growth and wound-healing/repair factors, in severe COVID-19 patients who survived compared to those with fatal outcomes. Serum samples were obtained from 286 COVID-19 patients and 40 healthy controls. The 62 circulating soluble factors were quantified using a Luminex Milliplex assay. Results. The patients who survived had decreased levels of the following 30 soluble factors of the 62 studied compared to those with fatal outcomes, therefore, these decreases were observed for cytokines and receptors predominantly produced by the innate immune system-IL-1 alpha, IL-1 alpha, IL-18, IL-15, IL-12p40, IL-6, IL-27, IL-1Ra, IL-1RI, IL-1RII, TNF alpha, TGF alpha, IL-10, sRAGE, sTNF-RI and sTNF-RII-for the chemokines IL-8, IP-10, MCP-1, MCP-3, MIG and fractalkine; for the growth factors M-CSF and the soluble receptor sIL2Ra; for the cytokines involved in the adaptive immune system IFN gamma, IL-17 and sIL-4R; and for the wound-repair factor FGF2. On the other hand, the patients who survived had elevated levels of the soluble factors TNF beta, sCD40L, MDC, RANTES, G-CSF, GM-CSF, EGF, PDGFAA and PDGFABBB compared to those who died. Conclusions. Increases in the circulating levels of the sCD40L cytokine; MDC and RANTES chemokines; the G-CSF and GM-CSF growth factors, EGF, PDGFAA and PDGFABBB; and tissue-repair factors are strongly associated with survival. By contrast, large increases in IL-15, IL-6, IL-18, IL-27 and IL-10; the sIL-1RI, sIL1RII and sTNF-RII receptors; the MCP3, IL-8, MIG and IP-10 chemokines; the M-CSF and sIL-2Ra growth factors; and the wound-healing factor FGF2 favor fatal outcomes of the disease

    The current status of mesenchymal stromal cells: controversies, unresolved issues and some promising solutions to improve their therapeutic efficacy

    Get PDF
    Mesenchymal stromal cells (MSCs) currently constitute the most frequently used cell type in advanced therapies with different purposes, most of which are related with inflammatory processes. Although the therapeutic efficacy of these cells has been clearly demonstrated in different disease animal models and in numerous human phase I/II clinical trials, only very few phase III trials using MSCs have demonstrated the expected potential therapeutic benefit. On the other hand, diverse controversial issues on the biology and clinical applications of MSCs, including their specific phenotype, the requirement of an inflammatory environment to induce immunosuppression, the relevance of the cell dose and their administration schedule, the cell delivery route (intravascular/systemic vs. local cell delivery), and the selected cell product (i.e., use of autologous vs. allogeneic MSCs, freshly cultured vs. frozen and thawed MSCs, MSCs vs. MSC-derived extracellular vesicles, etc.) persist. In the current review article, we have addressed these issues with special emphasis in the new approaches to improve the properties and functional capabilities of MSCs after distinct cell bioengineering strategies

    Clinical Audits in Outpatient Clinics for Chronic Obstructive Pulmonary Disease: Methodological Considerations and Workflow

    Get PDF
    Objectives: Previous clinical audits for chronic obstructive pulmonary disease (COPD) have provided valuable information on the clinical care delivered to patients admitted to medical wards because of COPD exacerbations. However, clinical audits of COPD in an outpatient setting are scarce and no methodological guidelines are currently available. Based on our previous experience, herein we describe a clinical audit for COPD patients in specialized outpatient clinics with the overall goal of establishing a potential methodological workflow.Methods: A pilot clinical audit of COPD patients referred to respiratory outpatient clinics in the region of Andalusia, Spain (over 8 million inhabitants), was performed. The audit took place between October 2013 and September 2014, and 10 centers (20% of all public hospitals) were invited to participate. Cases with an established diagnosis of COPD based on risk factors, clinical symptoms, and a post-bronchodilator FEV1/FVC ratio of less than 0.70 were deemed eligible. The usefulness of formally scheduled regular follow-up visits was assessed. Two different databases (resources and clinical database) were constructed. Assessments were planned over a year divided by 4 three-month periods, with the goal of determining seasonal-related changes. Exacerbations and survival served as the main endpoints.Conclusions: This paper describes a methodological framework for conducting a clinical audit of COPD patients in an outpatient setting. Results from such audits can guide health information systems development and implementation in real-world settings.This study was financially supported by an unrestricted grant from Laboratorios Menarini, SA (Barcelona, Spain)

    Selection Signatures in Worldwide Sheep Populations

    Get PDF
    The diversity of populations in domestic species offers great opportunities to study genome response to selection. The recently published Sheep HapMap dataset is a great example of characterization of the world wide genetic diversity in sheep. In this study, we re-analyzed the Sheep HapMap dataset to identify selection signatures in worldwide sheep populations. Compared to previous analyses, we made use of statistical methods that (i) take account of the hierarchical structure of sheep populations, (ii) make use of linkage disequilibrium information and (iii) focus specifically on either recent or older selection signatures. We show that this allows pinpointing several new selection signatures in the sheep genome and distinguishing those related to modern breeding objectives and to earlier post-domestication constraints. The newly identified regions, together with the ones previously identified, reveal the extensive genome response to selection on morphology, color and adaptation to new environments

    Clonal chromosomal mosaicism and loss of chromosome Y in elderly men increase vulnerability for SARS-CoV-2

    Full text link
    The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, COVID-19) had an estimated overall case fatality ratio of 1.38% (pre-vaccination), being 53% higher in males and increasing exponentially with age. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, we found 133 cases (1.42%) with detectable clonal mosaicism for chromosome alterations (mCA) and 226 males (5.08%) with acquired loss of chromosome Y (LOY). Individuals with clonal mosaic events (mCA and/or LOY) showed a 54% increase in the risk of COVID-19 lethality. LOY is associated with transcriptomic biomarkers of immune dysfunction, pro-coagulation activity and cardiovascular risk. Interferon-induced genes involved in the initial immune response to SARS-CoV-2 are also down-regulated in LOY. Thus, mCA and LOY underlie at least part of the sex-biased severity and mortality of COVID-19 in aging patients. Given its potential therapeutic and prognostic relevance, evaluation of clonal mosaicism should be implemented as biomarker of COVID-19 severity in elderly people. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, individuals with clonal mosaic events (clonal mosaicism for chromosome alterations and/or loss of chromosome Y) showed an increased risk of COVID-19 lethality
    • 

    corecore