43 research outputs found

    Hundreds of putatively functional small open reading frames in Drosophila

    Get PDF
    Background: The relationship between DNA sequence and encoded information is still an unsolved puzzle. The number of protein-coding genes in higher eukaryotes identified by genome projects is lower than was expected, while a considerable amount of putatively non-coding transcription has been detected. Functional small open reading frames (smORFs) are known to exist in several organisms. However, coding sequence detection methods are biased against detecting such very short open reading frames. Thus, a substantial number of non-canonical coding regions encoding short peptides might await characterization. Results: Using bio-informatics methods, we have searched for smORFs of less than 100 amino acids in the putatively non-coding euchromatic DNA of Drosophila melanogaster, and initially identified nearly 600,000 of them. We have studied the pattern of conservation of these smORFs as coding entities between D. melanogaster and Drosophila pseudoobscura, their presence in syntenic and in transcribed regions of the genome, and their ratio of conservative versus non-conservative nucleotide changes. For negative controls, we compared the results with those obtained using random short sequences, while a positive control was provided by smORFs validated by proteomics data. Conclusions: The combination of these analyses led us to postulate the existence of at least 401 functional smORFs in Drosophila, with the possibility that as many as 4,561 such functional smORFs may exist

    Finding smORFs: getting closer

    Get PDF
    Millions of small open reading frames exist in eukaryotes. We do not know how many, or which are translated, but bioinformatics is getting us closer to the answer. See related Research article: http://www.genomebiology.com/2015/16/1/179

    The Abruptex Mutations of Notch Disrupt the Establishment of Proneural Clusters in Drosophila

    Get PDF
    AbstractThe receptor encoded by the Notch gene plays a central role in preventing cells from making decisions about their fates until appropriate signals are present. This function of Notch requires the product of the Suppressor of Hairless gene. Loss of either Notch or Suppressor of Hairless function results in cells making premature and incorrect cell fate decisions, whilst increases in Notch signalling prevent cells from making these decisions. Here we find that the proneural clusters are not established correctly in certain Abruptex mutations of Notch and this failure to establish proneural clusters correctly is not due to increased Notch signalling during lateral inhibition. In addition we show that the overexpression of certain dominant negative Notch molecules can disrupt the initiation of proneural cluster development in a manner similar to the Abruptex mutants

    Development of Protocols for Regeneration and Transformation of Apomitic and Sexual Forms of Dallisgrass (Paspalum dilatatum Poir.)

    Get PDF
    Paspalum dilatatum (common name dallisgrass), a productive C4 grass native to South America, is an important pasture grass found throughout the temperate warm regions of the world. It is characterized by its tolerance to frost and water stress and a higher forage quality than other C4 forage grasses. P. dilatatum includes tetraploid (2n = 40), sexual, and pentaploid (2n = 50) apomictic forms, but is predominantly cultivated in an apomictic monoculture, which implies a high risk that biotic and abiotic stresses could seriously affect the grass productivity. The obtention of reproducible and efficient protocols of regeneration and transformation are valuable tools to obtain genetic modified grasses with improved agronomics traits. In this review, we present the current regeneration and transformation methods of both apomictic and sexual cultivars of P. dilatatum, discuss their strengths and limitations, and focus on the perspectives of genetic modification for producing new generation of forages. The advances in this area of research lead us to consider Paspalum dilatatum as a model species for the molecular improvement of C4 perennial forage species.Fil: Schrauf, Gustavo Enrique. Universidad de Buenos Aires. Facultad de Agronomía; ArgentinaFil: Voda, Lisandro. Universidad de Buenos Aires. Facultad de Agronomía; ArgentinaFil: Zelada, Alicia Mercedes. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Biodiversidad y Biología Experimental y Aplicada. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biodiversidad y Biología Experimental y Aplicada; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Fisiología, Biología Molecular y Celular; ArgentinaFil: García, Ana María. Universidad de Buenos Aires. Facultad de Agronomía; ArgentinaFil: Giordano, Andrea. Universidad de Buenos Aires. Facultad de Agronomía; ArgentinaFil: Peralta Roa, Pablo Leonel. Universidad de Buenos Aires. Facultad de Agronomía; ArgentinaFil: Guitian, Juan. Universidad de Buenos Aires. Facultad de Agronomía; ArgentinaFil: Rebori, Juan. Universidad de Buenos Aires. Facultad de Agronomía; ArgentinaFil: Ghio, Sergio. Universidad de Buenos Aires. Facultad de Agronomía; ArgentinaFil: Couso, Luciana Laura. Universidad de Buenos Aires. Facultad de Agronomía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Castro, Lautaro. Universidad de Buenos Aires. Facultad de Agronomía; ArgentinaFil: Musacchio, Eduardo. Universidad de Buenos Aires. Facultad de Agronomía; ArgentinaFil: Rush, Pablo. Universidad de Buenos Aires. Facultad de Agronomía; ArgentinaFil: Nagel, Jutta. No especifíca;Fil: Wang, Zeng Yu. No especifíca;Fil: Cogan, Noel. La Trobe University; AustraliaFil: Spangenberg, Germán. La Trobe University; Australi

    Peptides encoded by short ORFs control development and define a new eukaryotic gene family

    Get PDF
    Despite recent advances in developmental biology and in genomics, key questions remain regarding the organisation of cells into embryos. One possibility is that novel types of genes might await discovery and could provide some of the answers. Genome annotation depends strongly on comparison with previously known gene sequences, and so genes having previously uncharacterised structure and function can be missed. Here we present the characterisation of tarsal-less, a new such type of gene. Tarsal-less has two unusual features: first, it contains more than one coding unit, a structure more similar to some bacterial genes. Second, it codes for small peptides rather than proteins, and in fact these peptides represent the smallest gene products known to date. Functional analysis of this gene in the fruitfly Drosophila shows that it has important functions throughout development, including tissue morphogenesis and pattern formation. We identify genes similar to tarsal-less in other species, and thus define a tarsal-less-related gene family. We expect that a combination of bioinformatic and functional methods, such as the ones we use in this study, will identify and characterize more genes of this type. Potentially, thousands of such new genes may exist

    Pegasus, a small extracellular peptide enhancing the short-range diffusion of Wingless

    Get PDF
    Small Open Reading Frames (smORFs) coding for peptides of less than 100 amino-acids are an enigmatic and pervasive gene class, found in the tens of thousands in metazoan genomes. Here we reveal a short 80 amino-acid peptide (Pegasus) which enhances Wingless/Wnt1 protein short-range diffusion and signalling. During Drosophila wing development, Wingless has sequential functions, including late induction of proneural gene expression and wing margin development. Pegasus mutants produce wing margin defects and proneural expression loss similar to those of Wingless. Pegasus is secreted, and co-localizes and co-immunoprecipitates with Wingless, suggesting their physical interaction. Finally, measurements of fixed and in-vivo Wingless gradients support that Pegasus increases Wingless diffusion in order to enhance its signalling. Our results unveil a new element in Wingless signalling and clarify the patterning role of Wingless diffusion, while corroborating the link between small open reading frame peptides, and regulation of known proteins with membrane-related functions

    Dioxin Toxicity In Vivo Results from an Increase in the Dioxin-Independent Transcriptional Activity of the Aryl Hydrocarbon Receptor

    Get PDF
    The Aryl hydrocarbon receptor (Ahr) is the nuclear receptor mediating the toxicity of dioxins -widespread and persistent pollutants whose toxic effects include tumor promotion, teratogenesis, wasting syndrome and chloracne. Elimination of Ahr in mice eliminates dioxin toxicity but also produces adverse effects, some seemingly unrelated to dioxin. Thus the relationship between the toxic and dioxin-independent functions of Ahr is not clear, which hampers understanding and treatment of dioxin toxicity. Here we develop a Drosophila model to show that dioxin actually increases the in vivo dioxin-independent activity of Ahr. This hyperactivation resembles the effects caused by an increase in the amount of its dimerisation partner Ahr nuclear translocator (Arnt) and entails an increased transcriptional potency of Ahr, in addition to the previously described effect on nuclear translocation. Thus the two apparently different functions of Ahr, dioxin-mediated and dioxin-independent, are in fact two different levels (hyperactivated and basal, respectively) of a single function

    Functions of long non-coding RNAs in human disease and their conservation in Drosophila development

    Get PDF
    Genomic analysis has found that the transcriptome in both humans and Drosophila melanogaster features large numbers of long non-coding RNA transcripts (lncRNAs). This recently discovered class of RNAs regulates gene expression in diverse ways and has been involved in a large variety of important biological functions. Importantly, an increasing number of lncRNAs have also been associated with a range of human diseases, including cancer. Comparative analyses of their functions among these organisms suggest that some of their modes of action appear to be conserved. This highlights the importance of model organisms such as Drosophila, which shares many gene regulatory networks with humans, in understanding lncRNA function and its possible impact in human health. This review discusses some known functions and mechanisms of action of lncRNAs and their implication in human diseases, together with their functional conservation and relevance in Drosophila development

    Classification and function of small open reading frames

    Get PDF
    Small open reading frames (smORFs) of 100 codons or fewer are usually - if arbitrarily - excluded from proteome annotations. Despite this, the genomes of many metazoans, including humans, contain millions of smORFs, some of which fulfil key physiological functions. Recently, the transcriptome of Drosophila melanogaster was shown to contain thousands of smORFs of different classes that actively undergo translation, which produces peptides of mostly unknown function. Here, we present a comprehensive analysis of smORFs in flies, mice and humans. We propose the existence of several functional classes of smORFs, ranging from inert DNA sequences to transcribed and translated cis-regulators of translation and peptides with a propensity to function as regulators of membrane-associated proteins, or as components of ancient protein complexes in the cytoplasm. We suggest that the different smORF classes could represent steps in gene, peptide and protein evolution. Our analysis introduces a distinction between different peptide-coding classes of smORFs in animal genomes, and highlights the role of model organisms for the study of small peptide biology in the context of development, physiology and human disease
    corecore