59 research outputs found

    Gene Expression in Skeletal Muscle Biopsies from People with Type 2 Diabetes and Relatives: Differential Regulation of Insulin Signaling Pathways

    Get PDF
    BACKGROUND:Gene expression alterations have previously been associated with type 2 diabetes, however whether these changes are primary causes or secondary effects of type 2 diabetes is not known. As healthy first degree relatives of people with type 2 diabetes have an increased risk of developing type 2 diabetes, they provide a good model in the search for primary causes of the disease. METHODS/PRINCIPAL FINDINGS:We determined gene expression profiles in skeletal muscle biopsies from Caucasian males with type 2 diabetes, healthy first degree relatives, and healthy controls. Gene expression was measured using Affymetrix Human Genome U133 Plus 2.0 Arrays covering the entire human genome. These arrays have not previously been used for this type of study. We show for the first time that genes involved in insulin signaling are significantly upregulated in first degree relatives and significantly downregulated in people with type 2 diabetes. On the individual gene level, 11 genes showed altered expression levels in first degree relatives compared to controls, among others KIF1B and GDF8 (myostatin). LDHB was found to have a decreased expression in both groups compared to controls. CONCLUSIONS/SIGNIFICANCE:We hypothesize that increased expression of insulin signaling molecules in first degree relatives of people with type 2 diabetes, work in concert with increased levels of insulin as a compensatory mechanism, counter-acting otherwise reduced insulin signaling activity, protecting these individuals from severe insulin resistance. This compensation is lost in people with type 2 diabetes where expression of insulin signaling molecules is reduced

    The role of myostatin in muscle wasting: an overview

    Get PDF
    Myostatin is an extracellular cytokine mostly expressed in skeletal muscles and known to play a crucial role in the negative regulation of muscle mass. Upon the binding to activin type IIB receptor, myostatin can initiate several different signalling cascades resulting in the upregulation of the atrogenes and downregulation of the important for myogenesis genes. Muscle size is regulated via a complex interplay of myostatin signalling with the insulin-like growth factor 1/phosphatidylinositol 3-kinase/Akt pathway responsible for increase in protein synthesis in muscle. Therefore, the regulation of muscle weight is a process in which myostatin plays a central role but the mechanism of its action and signalling cascades are not fully understood. Myostatin upregulation was observed in the pathogenesis of muscle wasting during cachexia associated with different diseases (i.e. cancer, heart failure, HIV). Characterisation of myostatin signalling is therefore a perspective direction in the treatment development for cachexia. The current review covers the present knowledge about myostatin signalling pathways leading to muscle wasting and the state of therapy approaches via the regulation of myostatin and/or its downstream targets in cachexia

    Clinical classification of cancer cachexia:phenotypic correlates in human skeletal muscle

    Get PDF
    Aim – To relate muscle phenotype to a range of current diagnostic criteria for cancer cachexia Methods – 41 patients with resectable upper gastrointestinal (GI) or pancreatic cancer underwent characterisation for cachexia based on weight-loss (WL) and / or low muscularity (LM). Four diagnostic criteria were used >5%WL, >10% WL, LM, and LM + >2%WL. Patients underwent biopsy of the rectus muscle. Analysis included immunohistochemistry for fibre size and type, protein and nucleic acid concentration, and Western blots for markers of autophagy, SMAD signalling, and inflammation. Results – Compared with non-cachectic cancer patients, if patients were classified by LM or LM + >2%WL, mean muscle fibre diameter was significantly reduced (p = 0.02 and p = 0.001) repectively. No difference in fibre diameter was observed if patients were classified with WL alone. Regardless of classification, there was no difference in fibre number or proportion of fibre type across all myosin heavy chain isoforms. Mean muscle protein content was reduced and the ratio of RNA/DNA decreased if patients were classified by either >5% WL or LM + >2%WL. Compared with non-cachectic patients, when patients were classified according to >5% WL, SMAD3 protein levels were increased (p=0.022) and with >10% WL, beclin (p = 0.05) and ATG5 (p = 0.01) protein levels were also increased. There were no differences in pNFkB or pSTAT3 levels across any of the groups. Conclusions – Whereas fibre type is not targeted selectively, muscle fibre size, biochemical composition and pathway phenotype can vary according to whether the criteria for cachexia include both a measure of low muscularity and weight loss

    Myostatin: a negative regulator of muscle development and maintenance

    No full text
    International audienceMyostatin is a member of the TGF beta family which plays a major role in negative regulation of muscle development. Not only do mstn-/-mice display a dramatic increase in skeletal muscle mass, cattle harboring loss of function mutations in the myostatin gene also exhibit muscle overdevelopment associated to a shift in the contractile and metabolic features of muscles fibers. The occurrence of such mutations associated to increased muscle mass in humans has also been reported. Recent data clearly suggest that myostatin is also involved in muscle tissue maintenance in adults, in particular by activating pathways leading to proteolysis and satellite cell activity. As myostatin expression generally increases during muscle atrophy, some promising attempts have been made to improve the behavior of some muscle pathologies, such as myopathies, by targeting myostatin activity. These attempts have opened the way for novel pharmacological strategies focused on skeletal muscle diseases. Here we review the physiopathological consequences of changes in myostatin expression and their clinical interest. We also briefly address the myostatin molecular pathway by describing the knowledge which makes it possible to test the efficiency of pharmacological inhibition of this growth factor activity in muscle pathologies

    The myostatin gene: physiology and pharmacological relevance

    No full text
    International audienceMyostatin, which was cloned in 1997, is a potent inhibitor of skeletal muscle growth and member of the tumour growth factor-beta family. Disruption of the myostatin gene in mice induces a dramatic increase in muscle mass, caused by a combination of hypertrophy and hyperplasia. Natural mutations occurring in cattle were also associated with a significant increase in muscle mass and, recently, an inactivating myostatin mutation associated with the same phenotype was identified in humans. Studies into the molecular basis of this antimyogenic influence led to the conclusion that myostatin inhibits myoblast proliferation and differentiation through a classical tumour growth factor-beta pathway involving the activin receptor ActRIIB and Smads 2 and 3. Approaches that induce myostatin depletion or inactivation have led to a significant improvement in muscle regeneration processes, especially in degenerative diseases, through stimulation of satellite cell proliferation and differentiation. These promising data open the way to new therapeutic approaches in muscle diseases through targeting of the myostatin pathway

    Myostatin regulation of muscle development: Molecular basis, natural mutations, physiopathological aspects

    No full text
    International audienceSince its identification in 1997, myostatin has been considered as a novel and unique negative regulator of muscle growth, as mstn-/- mice display a dramatic and widespread increase in skeletal muscle mass. Myostatin also appears to be involved in muscle homeostasis in adults as its expression is regulated during muscle atrophy. Moreover, deletion of the myostatin gene seems to affect adipose tissue mass in addition to skeletal muscle mass. Natural myostatin gene mutations occur in cattle breeds such as Belgian Blue, exhibiting an obviously increased muscle mass, but also in humans, as has recently been demonstrated. Here we review these natural mutations and their associated phenotypes as well as the physiological influence of the alterations in myostatin expression and the physiopathological consequences of changes in myostatin expression, especially with regard to satellite cells. Interestingly, studies have demonstrated some rescue effects of myostatin in muscular pathologies such as myopathies, providing a novel pharmacological strategy for treatment. Furthermore, the myostatin pathway is now better understood thanks to in vitro studies and it consists of inhibition of myoblast progression in the cell cycle, inhibition of myoblast terminal differentiation, in both cases associated to protection from apoptosis. The molecular pathway driving the myogenic myostatin influence is currently under extensive study and many molecular partners of myostatin have been identified, suggesting novel potent muscle growth enhancers for both human and agricultural applications
    • …
    corecore