792 research outputs found

    The scientific evaluation of Rasnadashamula Kwatha in the management of Amavata w.s.r. to Rheumatoid arthritis: A Review Article

    Get PDF
    Background: Rheumatoid arthritis (RA) is the most common inflammatory arthritis in women and hence an important cause of potentially preventable disability. Many of the clinical features and management strategies in RA are relevant across the spectrum of inflammatory joint disease. The typical clinical phenotype of RA is a Symmetrical, deforming, small and large joint polyarthritis, often associated with systemic disturbance and extraarticular disease. The clinical course is usually life-long, with intermittent exacerbations and remissions and highly variable severity. In Ayurveda, ‘Amavata’ was mentioned for the first time by Acharya Madhavakara has a special disease entity in which both ‘Ama’ as well as ‘Vata’ play a predominant role in the pathogenesis of this disease. Aim: The Article is written with the aim to analyze the of mode of action of the ingredients of Rasnadashamula Kwatha and explore its importance in relieving the symptoms of Amavata w.s.r. to Rheumatoid arthritis. Methodology: Rasnadashamula Kwatha is described in Amavata Rogadhikara in Chakradatta . Various peer reviewed articles, Ayurvedic classical textbooks, Modern Rheumatological textbooks as well as the online databases were analyzed under the relevant key words in understanding the importance of the above-mentioned formulation in treating the symptoms of Amavata w.s.r. to Rheumatoid arthritis. Conclusion: It can be concluded through literary review that Rasnadashamula Kwatha is efficient in relieving the symptoms of Amavata but to establish the final conclusion clinical trial of this drug should be conducted so that this drug can be used for therapeutic purposes in general patients of Amavata

    Newtonian Analysis of Gravitational Waves from Naked Singularity

    Get PDF
    Spherical dust collapse generally forms a shell focusing naked singularity at the symmetric center. This naked singularity is massless. Further the Newtonian gravitational potential and speed of the dust fluid elements are everywhere much smaller than unity until the central shell focusing naked singularity formation if an appropriate initial condition is set up. Although such a situation is highly relativistic, the analysis by the Newtonian approximation scheme is available even in the vicinity of the space-time singularity. This remarkable feature makes the analysis of such singularity formation very easy. We investigate non-spherical even-parity matter perturbations in this scheme by complementary using numerical and semi-analytical approaches, and estimate linear gravitational waves generated in the neighborhood of the naked singularity by the quadrupole formula. The result shows good agreement with the relativistic perturbation analysis recently performed by Iguchi et al. The energy flux of the gravitational waves is finite but the space-time curvature carried by them diverges.Comment: 23 pages, 8 figure

    Gravitational collapse of a Hagedorn fluid in Vaidya geometry

    Get PDF
    The gravitational collapse of a high-density null charged matter fluid, satisfying the Hagedorn equation of state, is considered in the framework of the Vaidya geometry. The general solution of the gravitational field equations can be obtained in an exact parametric form. The conditions for the formation of a naked singularity, as a result of the collapse of the compact object, are also investigated. For an appropriate choice of the arbitrary integration functions the null radial outgoing geodesic, originating from the shell focussing central singularity, admits one or more positive roots. Hence a collapsing Hagedorn fluid could end either as a black hole, or as a naked singularity. A possible astrophysical application of the model, to describe the energy source of gamma-ray bursts, is also considered.Comment: 14 pages, 2 figures, to appear in Phys. Rev.

    High-Speed Cylindrical Collapse of Two Perfect Fluids

    Full text link
    In this paper, the study of the gravitational collapse of cylindrically distributed two perfect fluid system has been carried out. It is assumed that the collapsing speeds of the two fluids are very large. We explore this condition by using the high-speed approximation scheme. There arise two cases, i.e., bounded and vanishing of the ratios of the pressures with densities of two fluids given by cs,dsc_s, d_s. It is shown that the high-speed approximation scheme breaks down by non-zero pressures p1,p2p_1, p_2 when cs,dsc_s, d_s are bounded below by some positive constants. The failure of the high-speed approximation scheme at some particular time of the gravitational collapse suggests the uncertainity on the evolution at and after this time. In the bounded case, the naked singularity formation seems to be impossible for the cylindrical two perfect fluids. For the vanishing case, if a linear equation of state is used, the high-speed collapse does not break down by the effects of the pressures and consequently a naked singularity forms. This work provides the generalisation of the results already given by Nakao and Morisawa [1] for the perfect fluid.Comment: 11 pages, 1 figure, accepted for publication in Gen. Rel. Gra

    Space-time inhomogeneity, anisotropy and gravitational collapse

    Full text link
    We investigate the evolution of non-adiabatic collapse of a shear-free spherically symmetric stellar configuration with anisotropic stresses accompanied with radial heat flux. The collapse begins from a curvature singularity with infinite mass and size on an inhomogeneous space-time background. The collapse is found to proceed without formation of an even horizon to singularity when the collapsing configuration radiates all its mass energy. The impact of inhomogeneity on various parameters of the collapsing stellar configuration is examined in some specific space-time backgrounds.Comment: To appear in Gen. Relativ. Gra

    Palaeoproterozoic magnesite: lithological and isotopic evidence for playa/sabkha environments

    Get PDF
    Magnesite forms a series of 1- to 15-m-thick beds within the approximate to2.0 Ga (Palaeoproterozoic) Tulomozerskaya Formation, NW Fennoscandian Shield, Russia. Drillcore material together with natural exposures reveal that the 680-m-thick formation is composed of a stromatolite-dolomite-'red bed' sequence formed in a complex combination of shallow-marine and non-marine, evaporitic environments. Dolomite-collapse breccia, stromatolitic and micritic dolostones and sparry allochemical dolostones are the principal rocks hosting the magnesite beds. All dolomite lithologies are marked by delta C-13 values from +7.1 parts per thousand to +11.6 parts per thousand (V-PDB) and delta O-18 ranging from 17.4 parts per thousand to 26.3 parts per thousand (V-SMOW). Magnesite occurs in different forms: finely laminated micritic; stromatolitic magnesite; and structureless micritic, crystalline and coarsely crystalline magnesite. All varieties exhibit anomalously high delta C-13 values ranging from +9.0 parts per thousand to +11.6 parts per thousand and delta O-18 values of 20.0-25.7 parts per thousand. Laminated and structureless micritic magnesite forms as a secondary phase replacing dolomite during early diagenesis, and replaced dolomite before the major phase of burial. Crystalline and coarsely crystalline magnesite replacing micritic magnesite formed late in the diagenetic/metamorphic history. Magnesite apparently precipitated from sea water-derived brine, diluted by meteoric fluids. Magnesitization was accomplished under evaporitic conditions (sabkha to playa lake environment) proposed to be similar to the Coorong or Lake Walyungup coastal playa magnesite. Magnesite and host dolostones formed in evaporative and partly restricted environments; consequently, extremely high delta C-13 values reflect a combined contribution from both global and local carbon reservoirs. A C- 13-rich global carbon reservoir (delta C-13 at around +5 parts per thousand) is related to the perturbation of the carbon cycle at 2.0 Ga, whereas the local enhancement in C-13 (up to +12 parts per thousand) is associated with evaporative and restricted environments with high bioproductivity

    Minimum black hole mass from colliding Gaussian packets

    Full text link
    We study the formation of a black hole in the collision of two Gaussian packets. Rather than following their dynamical evolution in details, we assume a horizon forms when the mass function for the two packets becomes larger than half the flat areal radius, as it would occur in a spherically symmetric geometry. This simple approximation allows us to determine the existence of a minimum black hole mass solely related to the width of the packets. We then comment on the possible physical implications, both in classical and quantum physics, and models with extra spatial dimensions.Comment: 11 pages, 4 figure

    Test of the weak cosmic censorship conjecture with a charged scalar field and dyonic Kerr-Newman black holes

    Full text link
    A thought experiment considered recently in the literature, in which it is investigated whether a dyonic Kerr-Newman black hole can be destroyed by overcharging or overspinning it past extremality by a massive complex scalar test field, is revisited. Another derivation of the result that this is not possible, i.e. the weak cosmic censorship is not violated in this thought experiment, is given. The derivation is based on conservation laws, on a null energy condition, and on specific properties of the metric and the electromagnetic field of dyonic Kerr-Newman black holes. The metric is kept fixed, whereas the dynamics of the electromagnetic field is taken into account. A detailed knowledge of the solutions of the equations of motion is not needed. The approximation in which the electromagnetic field is fixed is also considered, and a derivation for this case is also given. In addition, an older version of the thought experiment, in which a pointlike test particle is used, is revisited. The same result, namely the non-violation of the cosmic censorship, is rederived in a way which is simpler than in earlier works.Comment: 18 pages, LaTe

    Electrooxidation of glucose by binder-free bimetallic Pd1Ptx/graphene aerogel/nickel foam composite electrodes with low metal loading in basic medium

    Get PDF
    Many 2D graphene-based catalysts for electrooxidation of glucose involved the use of binders and toxic reducing agents in the preparation of the electrodes, which potentially causes the masking of original activity of the electrocatalysts. In this study, a green method was developed to prepare binder-free 3D graphene aerogel/nickel foam electrodes in which bimetallic Pd-Pt NP alloy with different at% ratios were loaded on 3D graphene aerogel. The influence of Pd/Pt ratio (at%: 1:2.9, 1:1.31, 1:1.03), glucose concentration (30 mM, 75 mM, 300 mM, 500 mM) and NaOH concentration (0.1 M, 1 M) on electrooxidation of glucose were investigated. The catalytic activity of the electrodes was enhanced with increasing the Pd/Pt ratio from 1:2.9 to 1:1.03, and changing the NaOH/glucose concentration from 75 mM glucose/0.1 M NaOH to 300 mM glucose/1 M NaOH. The Pd1Pt1.03/GA/NF electrode achieved a high current density of 388.59 A g−1 under the 300 mM glucose/1 M NaOH condition. The stability of the electrodes was also evaluated over 1000 cycles. This study demonstrated that the Pd1Pt1.03/GA/NF electrode could be used as an anodic electrode in glucose-based fuel cells
    corecore