41 research outputs found

    The Uniform World Model: A Methodology for Predicting the Health Impacts of Air Pollution

    Get PDF
    47 p.Throughout history, technological development and economic growth has led to greater prosperity and overall standard of living for many people in society. However, along with the benefits of economic development comes the social responsibility of minimizing the mortality and morbidity health impacts associated with human activities, safeguarding ecosystems, protecting world cultural heritage and preventing integrity and amenity losses of man-made environments. Effects are often irreversible, extend way beyond national borders and can occur over a long time lag. At current pollutant levels, the monetized impacts carry a significant burden to society, on the order of few percent of a country’s GDP, and upwards to 10% of GDP for countries in transition. A recent study for the European Union found that the aggregate damage burden from industrial air pollution alone costs every man, woman and child between 200 and 330 € a year, of which CO2 emissions contributed 40 to 60% (EEA 2011). In a sustainable world, an assessment of the environmental impacts (and damage costs) imposed by man\\\'s decisions on present and future generations is necessary when addressing the cost effectiveness of local and national policy options that aim at improving air quality and reducing greenhouse gas emissions. The aim of this paper is to present a methodology for calculating such adverse public health outcomes arising from exposure to routine atmospheric pollutant emissions using a simplified methodology, referred to as the Uniform World Model (UWM). The UWM clearly identifies the most relevant factors of the analysis, is easy to implement and requires only a few key input parameters that are easily obtained by the analyst, even to someone living in a developing country. The UWM is exact in the limit all parameters are uniformly distributed, due to mass conservation. The current approach can be applied to elevated and mobile sources. Its robustness has been validated (typical deviations are well within the ±50% range) by comparison with much more detailed air quality and environmental impact assessment models, such as ISC3, CALPUFF, EMEP and GAINS. Several comparisons illustrating the wide range of applicability of the UWM are presented in the paper, including estimation of mean concentrations at the local, country and continental level and calculation of local and country level intake factors and marginal damage costs of primary particulate matter and inorganic secondary aerosols. Relationships are also provided for computing spatial concentrations profiles and cumulative impact or damage cost distributions. Assessments cover sources located in the USA, Europe, East Asia (China) and South Asia (India)

    Decarbonising urban transportation

    Get PDF
    18 p.The transportation sector is a major contributor to global greenhouse gas emissions, accounting for around one-quarter of current annual emissions. Surface transportation (passenger vehicles, buses, rail, and freight transportation) contributes 75% of total emissions, with the remaining 25% allocated equally between air and water transport. According to the recently released 5th Assessment Report of the IPCC (September 2013), the transportation sector is expected to grow significantly in future years, particularly in rapidly developing countries around the world, and will therefore be one of a few key drivers of increasing global warming. Unless there is a major political effort and consumer willingness to change current energy consumption patterns and travel modes over the next few decades, transport-related emissions are likely to double by 2050 relative to levels observed in 2010. Because of the contribution of transportation to climate change and its impact on urban air quality, a comparative assessment of potential carbon emission reductions and health benefits of reduced particulate matter emissions was undertaken considering several low carbon pathways for development of the urban road transport sector up to 2050. As a result, we conclude that aggressive changes will be needed to scale back future emissions by 20% (or more) compared to present day emissions. These changes will impact vehicle fuel economy (+50%), urban mobility patterns (lower private car demand and greater use of public transportation), choice of alternative fuels (less use of petroleum-based fuels and greater use of biofuels and electrons) and electricity generation mix (greater use of renewables, carbon capture technologies for limiting fossil fuel carbon emissions, and/or nuclear energy). Public acceptance is fundamental to bring about changes in consumer attitudes and behaviour. Given the long lead times required for research, development, demonstration and deployment of new technologies, the time to act is now if we are to limit the global mean surface temperature increase to within 2°C above preindustrial levels

    Breaking the 400 ppm barrier: Physical and Social implications of the recent CO2 rise

    Get PDF
    6 p.The concentration of carbon dioxide (CO2) in the atmosphere has achieved its highest levels in the last 800,000 years, and probably even in the last 2.1 million years, recently topping briefly the atmospheric concentration target of 400 ppm. Whereas this mark does not set Earth’s climate in an apocalyptic mode, it does represent a grave global sociopolitical risk, because it highlights the inaction and indifference of government and society to our self-triggered climate changes and their consequences, especially for the poor and the weak. *Since pre-industrial times (i.e. since 1750), atmospheric CO2 concentrations have increased by over 40%, primarily from fossil fuel emissions and decondarily from net land use change emissions, at a rate unprecedented in the last 22,000 years, reaching an average of 2 ppm/ year in the last decade. About 30% of the emitted anthropogenic CO2 has been absorbed by the ocean, causing ocean acidification that poses serious risks to marine ecosystems, resources, and services. *Ice core paleoclimate records teach us that, under typical conditions, global surface temperature never changes much in the long term (of centuries) without a corresponding change in atmospheric CO2 concentration, and vice-versa. In order to explain the amount of warming observed in the temperature records, one must take into account the greenhouse effect caused by the corresponding Atmospheric CO2 concentrations in that period. This does not preclude, however, the occurrence of short-term (decadal) climate variability, which can enhance or counteract the prevailing temperature trend (e.g. the current 15-year hiatus in global temperature rise). *In a business as usual scenario, atmospheric CO2 concentrations by the middle of the 21st century would reach just over 500 ppm, a change of 25% above the present value, which would probably lead to an increase of more than 2ºC in the global mean surface temperature On the other hand, reducing emissions by 2% per year starting no later than 2020 would limit the global carbon dioxide concentration to below 450 ppm. Delaying emission cuts will only enhance the risks of dangerous, and potentially irreversible, climatic changes and increase the costs of future mitigation and adaptation measures

    Health Impacts and Economic Costs of Air Pollution in the Metropolitan Area of Skopje

    Get PDF
    Background: Urban outdoor air pollution, especially particulate matter, remains a major environmental health problem in Skopje, the capital of the former Yugoslav Republic of Macedonia. Despite the documented high levels of pollution in the city, the published evidence on its health impacts is as yet scarce. Methods: we obtained, cleaned, and validated Particulate Matter (PM) concentration data from five air quality monitoring stations in the Skopje metropolitan area, applied relevant concentration-response functions, and evaluated health impacts against two theoretical policy scenarios. We then calculated the burden of disease attributable to PM and calculated the societal cost due to attributable mortality. Results: In 2012, long-term exposure to PM2.5 (49.2 μg/m3) caused an estimated 1199 premature deaths (CI95% 821–1519). The social cost of the predicted premature mortality in 2012 due to air pollution was estimated at between 570 and 1470 million euros. Moreover, PM2.5 was also estimated to be responsible for 547 hospital admissions (CI95% 104–977) from cardiovascular diseases, and 937 admissions (CI95% 937–1869) for respiratory disease that year. Reducing PM2.5 levels to the EU limit (25 μg/m3) could have averted an estimated 45% of PM-attributable mortality, while achieving the WHO Air Quality Guidelines (10 μg/m3) could have averted an estimated 77% of PM-attributable mortality. Both scenarios would also attain significant reductions in attributable respiratory and cardiovascular hospital admissions. Conclusions: Besides its health impacts in terms of increased premature mortality and hospitalizations, air pollution entails significant economic costs to the population of Skopje. Reductions in PM2.5 concentrations could provide substantial health and economic gains to the city

    400 ppm-ko langa hautsi da: CO2-kontzentrazioaren igoeraren ondorio fisiko eta sozialak

    Get PDF
    6 p.The concentration of carbon dioxide (CO2) in the atmosphere has achieved its highest levels in the last 800,000 years, and probably even in the last 2.1 million years, recently topping briefly the atmospheric concentration target of 400 ppm. Whereas this mark does not set Earth’s climate in an apocalyptic mode, it does represent a grave global sociopolitical risk, because it highlights the inaction and indifference of government and society to our self-triggered climate changes and their consequences, especially for the poor and the weak. *Since pre-industrial times (i.e. since 1750), atmospheric CO2 concentrations have increased by over 40%, primarily from fossil fuel emissions and decondarily from net land use change emissions, at a rate unprecedented in the last 22,000 years, reaching an average of 2 ppm/ year in the last decade. About 30% of the emitted anthropogenic CO2 has been absorbed by the ocean, causing ocean acidification that poses serious risks to marine ecosystems, resources, and services. *Ice core paleoclimate records teach us that, under typical conditions, global surface temperature never changes much in the long term (of centuries) without a corresponding change in atmospheric CO2 concentration, and vice-versa. In order to explain the amount of warming observed in the temperature records, one must take into account the greenhouse effect caused by the corresponding Atmospheric CO2 concentrations in that period. This does not preclude, however, the occurrence of short-term (decadal) climate variability, which can enhance or counteract the prevailing temperature trend (e.g. the current 15-year hiatus in global temperature rise). *In a business as usual scenario, atmospheric CO2 concentrations by the middle of the 21st century would reach just over 500 ppm, a change of 25% above the present value, which would probably lead to an increase of more than 2ºC in the global mean surface temperature On the other hand, reducing emissions by 2% per year starting no later than 2020 would limit the global carbon dioxide concentration to below 450 ppm. Delaying emission cuts will only enhance the risks of dangerous, and potentially irreversible, climatic changes and increase the costs of future mitigation and adaptation measures

    Rompiendo la barrera de las 400 ppm: implicaciones físicas y sociales del reciente aumento de CO2

    Get PDF
    6 p.The concentration of carbon dioxide (CO2) in the atmosphere has achieved its highest levels in the last 800,000 years, and probably even in the last 2.1 million years, recently topping briefly the atmospheric concentration target of 400 ppm. Whereas this mark does not set Earth’s climate in an apocalyptic mode, it does represent a grave global sociopolitical risk, because it highlights the inaction and indifference of government and society to our self-triggered climate changes and their consequences, especially for the poor and the weak. *Since pre-industrial times (i.e. since 1750), atmospheric CO2 concentrations have increased by over 40%, primarily from fossil fuel emissions and decondarily from net land use change emissions, at a rate unprecedented in the last 22,000 years, reaching an average of 2 ppm/ year in the last decade. About 30% of the emitted anthropogenic CO2 has been absorbed by the ocean, causing ocean acidification that poses serious risks to marine ecosystems, resources, and services. *Ice core paleoclimate records teach us that, under typical conditions, global surface temperature never changes much in the long term (of centuries) without a corresponding change in atmospheric CO2 concentration, and vice-versa. In order to explain the amount of warming observed in the temperature records, one must take into account the greenhouse effect caused by the corresponding Atmospheric CO2 concentrations in that period. This does not preclude, however, the occurrence of short-term (decadal) climate variability, which can enhance or counteract the prevailing temperature trend (e.g. the current 15-year hiatus in global temperature rise). *In a business as usual scenario, atmospheric CO2 concentrations by the middle of the 21st century would reach just over 500 ppm, a change of 25% above the present value, which would probably lead to an increase of more than 2ºC in the global mean surface temperature On the other hand, reducing emissions by 2% per year starting no later than 2020 would limit the global carbon dioxide concentration to below 450 ppm. Delaying emission cuts will only enhance the risks of dangerous, and potentially irreversible, climatic changes and increase the costs of future mitigation and adaptation measures

    Global estimates of mortality associated with long-term exposure to outdoor fine particulate matter.

    Get PDF
    Exposure to ambient fine particulate matter (PM2.5) is a major global health concern. Quantitative estimates of attributable mortality are based on disease-specific hazard ratio models that incorporate risk information from multiple PM2.5 sources (outdoor and indoor air pollution from use of solid fuels and secondhand and active smoking), requiring assumptions about equivalent exposure and toxicity. We relax these contentious assumptions by constructing a PM2.5-mortality hazard ratio function based only on cohort studies of outdoor air pollution that covers the global exposure range. We modeled the shape of the association between PM2.5 and nonaccidental mortality using data from 41 cohorts from 16 countries-the Global Exposure Mortality Model (GEMM). We then constructed GEMMs for five specific causes of death examined by the global burden of disease (GBD). The GEMM predicts 8.9 million [95% confidence interval (CI): 7.5-10.3] deaths in 2015, a figure 30% larger than that predicted by the sum of deaths among the five specific causes (6.9; 95% CI: 4.9-8.5) and 120% larger than the risk function used in the GBD (4.0; 95% CI: 3.3-4.8). Differences between the GEMM and GBD risk functions are larger for a 20% reduction in concentrations, with the GEMM predicting 220% higher excess deaths. These results suggest that PM2.5 exposure may be related to additional causes of death than the five considered by the GBD and that incorporation of risk information from other, nonoutdoor, particle sources leads to underestimation of disease burden, especially at higher concentrations

    Global patient outcomes after elective surgery: prospective cohort study in 27 low-, middle- and high-income countries.

    Get PDF
    BACKGROUND: As global initiatives increase patient access to surgical treatments, there remains a need to understand the adverse effects of surgery and define appropriate levels of perioperative care. METHODS: We designed a prospective international 7-day cohort study of outcomes following elective adult inpatient surgery in 27 countries. The primary outcome was in-hospital complications. Secondary outcomes were death following a complication (failure to rescue) and death in hospital. Process measures were admission to critical care immediately after surgery or to treat a complication and duration of hospital stay. A single definition of critical care was used for all countries. RESULTS: A total of 474 hospitals in 19 high-, 7 middle- and 1 low-income country were included in the primary analysis. Data included 44 814 patients with a median hospital stay of 4 (range 2-7) days. A total of 7508 patients (16.8%) developed one or more postoperative complication and 207 died (0.5%). The overall mortality among patients who developed complications was 2.8%. Mortality following complications ranged from 2.4% for pulmonary embolism to 43.9% for cardiac arrest. A total of 4360 (9.7%) patients were admitted to a critical care unit as routine immediately after surgery, of whom 2198 (50.4%) developed a complication, with 105 (2.4%) deaths. A total of 1233 patients (16.4%) were admitted to a critical care unit to treat complications, with 119 (9.7%) deaths. Despite lower baseline risk, outcomes were similar in low- and middle-income compared with high-income countries. CONCLUSIONS: Poor patient outcomes are common after inpatient surgery. Global initiatives to increase access to surgical treatments should also address the need for safe perioperative care. STUDY REGISTRATION: ISRCTN5181700

    Geoeconomic variations in epidemiology, ventilation management, and outcomes in invasively ventilated intensive care unit patients without acute respiratory distress syndrome: a pooled analysis of four observational studies

    Get PDF
    Background: Geoeconomic variations in epidemiology, the practice of ventilation, and outcome in invasively ventilated intensive care unit (ICU) patients without acute respiratory distress syndrome (ARDS) remain unexplored. In this analysis we aim to address these gaps using individual patient data of four large observational studies. Methods: In this pooled analysis we harmonised individual patient data from the ERICC, LUNG SAFE, PRoVENT, and PRoVENT-iMiC prospective observational studies, which were conducted from June, 2011, to December, 2018, in 534 ICUs in 54 countries. We used the 2016 World Bank classification to define two geoeconomic regions: middle-income countries (MICs) and high-income countries (HICs). ARDS was defined according to the Berlin criteria. Descriptive statistics were used to compare patients in MICs versus HICs. The primary outcome was the use of low tidal volume ventilation (LTVV) for the first 3 days of mechanical ventilation. Secondary outcomes were key ventilation parameters (tidal volume size, positive end-expiratory pressure, fraction of inspired oxygen, peak pressure, plateau pressure, driving pressure, and respiratory rate), patient characteristics, the risk for and actual development of acute respiratory distress syndrome after the first day of ventilation, duration of ventilation, ICU length of stay, and ICU mortality. Findings: Of the 7608 patients included in the original studies, this analysis included 3852 patients without ARDS, of whom 2345 were from MICs and 1507 were from HICs. Patients in MICs were younger, shorter and with a slightly lower body-mass index, more often had diabetes and active cancer, but less often chronic obstructive pulmonary disease and heart failure than patients from HICs. Sequential organ failure assessment scores were similar in MICs and HICs. Use of LTVV in MICs and HICs was comparable (42\ub74% vs 44\ub72%; absolute difference \u20131\ub769 [\u20139\ub758 to 6\ub711] p=0\ub767; data available in 3174 [82%] of 3852 patients). The median applied positive end expiratory pressure was lower in MICs than in HICs (5 [IQR 5\u20138] vs 6 [5\u20138] cm H2O; p=0\ub70011). ICU mortality was higher in MICs than in HICs (30\ub75% vs 19\ub79%; p=0\ub70004; adjusted effect 16\ub741% [95% CI 9\ub752\u201323\ub752]; p<0\ub70001) and was inversely associated with gross domestic product (adjusted odds ratio for a US$10 000 increase per capita 0\ub780 [95% CI 0\ub775\u20130\ub786]; p<0\ub70001). Interpretation: Despite similar disease severity and ventilation management, ICU mortality in patients without ARDS is higher in MICs than in HICs, with a strong association with country-level economic status. Funding: No funding
    corecore