
Global estimates of mortality associated with long-
term exposure to outdoor fine particulate matter
Richard Burnetta, Hong Chena,b, Mieczysław Szyszkowicza,1, Neal Fannc, Bryan Hubbelld, C. Arden Pope IIIe,
Joshua S. Aptef, Michael Brauerg, Aaron Cohenh, Scott Weichenthali,j, Jay Cogginsk, Qian Dil, Bert Brunekreefm,
Joseph Frostadn, Stephen S. Limn, Haidong Kano, Katherine D. Walkerh, George D. Thurstonp, Richard B. Hayesq,
Chris C. Limr, Michelle C. Turners, Michael Jerrettt, Daniel Krewskiu, Susan M. Gapsturv, W. Ryan Diverv, Bart Ostrow,
Debbie Goldbergx, Daniel L. Crousey, Randall V. Martinz, Paul Petersaa,bb,cc, Lauren Pinaultdd, Michael Tjepkemadd,
Aaron van Donkelaarz, Paul J. Villeneuveaa, Anthony B. Milleree, Peng Yinff, Maigeng Zhouff, Lijun Wangff,
Nicole A. H. Janssengg, Marten Marragg, Richard W. Atkinsonhh,ii, Hilda Tsangjj, Thuan Quoc Thachjj, John B. Cannone,
Ryan T. Allene, Jaime E. Hartkk, Francine Ladenkk, Giulia Cesaronill, Francesco Forastierell, Gudrun Weinmayrmm,
Andrea Jaenschmm, Gabriele Nagelmm, Hans Concinnn, and Joseph V. Spadarooo

aPopulation Studies Division, Health Canada, Ottawa, ON K1A 0K9, Canada; bDepartment of Environmental and Occupational Health, Public Health Ontario,
Toronto, ONM5G 1V2, Canada; cRisk and Benefits Group, Office of Air Quality Planning and Standards, US Environmental Protection Agency,Washington, DC 20460;
dOffice of Research and Development, US Environmental Protection Agency, Washington, DC 20460; eDepartment of Economics, Brigham Young University, Provo,
UT 84602; fDepartment of Civil, Architectural and Environmental Engineering, University of Texas at Austin, Austin, TX 78712; gSchool of Population and Public
Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; hHealth Effects Institute, Boston, MA 02110-1817; iDepartment of Epidemiology, Biostatistics,
and Occupational Health, McGill University, Montreal, QC H3A 0G4, Canada; jGerald Bronfman Department of Oncology, McGill University, Montreal, QC H3A 0G4,
Canada; kDepartment of Applied Economics, University of Minnesota, Minneapolis, MN 55455; lDepartment of Biostatistics, Harvard T. H. Chan School of Public
Health, Boston, MA 02115; mInstitute for Risk Assessment Sciences, Universiteit Utrecht, 3512 JE Utrecht, The Netherlands; nInstitute for Health Metrics and
Evaluation, University of Washington, Seattle, WA 98195; oSchool of Public Health, Fudan University, Shanghai 200433, China; pEnvironmental Medicine and
Population Health, Program in Human Exposures and Health Effects, New York University School of Medicine, New York, NY 10016; qDepartment of Population
Health, NYU Langone Medical Center, New York, NY 10016; rDepartment of Environmental Medicine, New York University School of Medicine, New York, NY
10016; sISGlobal, Barcelona Institute for Global Health, 08036 Barcelona, Spain; tDepartment of Environmental Health Sciences, Fielding School of Public Health,
University of California, Los Angeles, CA 90095; uMcLaughlin Centre for Population Health Risk Assessment, University of Ottawa, Ottawa, ON K1N 6N5, Canada;
vEpidemiology Research Program, American Cancer Society, Inc., Atlanta, GA 30303; wDepartment of Civil and Environmental Engineering, University of California,
Davis, CA 95616; xCancer Prevention Institute of California, Fremont, CA 94538; yDepartment of Sociology, University of New Brunswick, Fredericton, NB E3B 5A3,
Canada; zDepartment of Physics and Atmospheric Science, Dalhousie University, Halifax, NS B3H 4R2, Canada; aaDepartment of Health Sciences, Carleton
University, Ottawa, ON K1S 5B6, Canada; bbDepartment of Geography and Environment, Carleton University, Ottawa, ON K1S 5B6, Canada; ccNew Brunswick
Institute for Research, Data and Training, University of New Brunswick, Fredericton, NB E3B 5A3, Canada; ddHealth Analysis Division, Statistics Canada, Ottawa,
ON K1A 0T6, Canada; eeDalla Lana School of Public Health, University of Toronto, Toronto, ON M5T 3M7, Canada; ffNational Center for Chronic
Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 100050, China; ggNational Institute for Public
Health and the Environment, 3720 BA Bilthoven, The Netherlands; hhPopulation Health Research Institute, St. George’s, University of London, London SW17
0RE, United Kingdom; iiMRC-PHE Centre for Environment and Health, St. George’s, University of London, London SW17 0RE, United Kingdom; jjSchool of Public Health,
University of Hong Kong, Hong Kong, China; kkDepartment of Environmental Health, Harvard C.T. Channing School of Public Health, Harvard University, Boston, MA 02115;
llDepartment of Epidemiology, Regional Health Service, ASL Roma 1, 00147 Rome, Italy; mmInstitute of Epidemiology and Medical Biometry, Ulm University, 89081 Ulm,
Germany; nnAgency for Preventive and Social Medicine, 6900 Bregenz, Austria; and ooSpadaro Environmental Research Consultants (SERC), Philadelphia, PA 19142

Edited by Maureen L. Cropper, University of Maryland, College Park, MD, and approved July 23, 2018 (received for review February 22, 2018)

Exposure to ambient fine particulate matter (PM2.5) is a major
global health concern. Quantitative estimates of attributable mor-
tality are based on disease-specific hazard ratio models that incor-
porate risk information from multiple PM2.5 sources (outdoor and
indoor air pollution from use of solid fuels and secondhand and
active smoking), requiring assumptions about equivalent exposure
and toxicity. We relax these contentious assumptions by construct-
ing a PM2.5-mortality hazard ratio function based only on cohort
studies of outdoor air pollution that covers the global exposure range.
We modeled the shape of the association between PM2.5 and non-
accidental mortality using data from 41 cohorts from 16 countries—
the Global Exposure Mortality Model (GEMM). We then constructed
GEMMs for five specific causes of death examined by the global bur-
den of disease (GBD). The GEMM predicts 8.9 million [95% confidence
interval (CI): 7.5–10.3] deaths in 2015, a figure 30% larger than that
predicted by the sum of deaths among the five specific causes (6.9;
95% CI: 4.9–8.5) and 120% larger than the risk function used in the
GBD (4.0; 95% CI: 3.3–4.8). Differences between the GEMM and GBD
risk functions are larger for a 20% reduction in concentrations, with
the GEMM predicting 220% higher excess deaths. These results sug-
gest that PM2.5 exposure may be related to additional causes of death
than the five considered by the GBD and that incorporation of risk
information from other, nonoutdoor, particle sources leads to under-
estimation of disease burden, especially at higher concentrations.

mortality | exposure | risk | concentration | fine particulate matter

Exposure to outdoor fine particulate matter (PM2.5) is recog-
nized as a major global health concern (1). In particular, both

nonaccidental and cause-specific mortality have been associated
with outdoor PM2.5 concentrations. In cohort studies, where sub-
jects provide information on major mortality risk factors such as
cigarette smoking, obesity, and occupation, estimates of outdoor
PM2.5 exposure are assigned based on multiple year averages and
followed over time to ascertain their date and underlying cause of
death. The magnitude of the association between PM2.5 exposure
and the probability of death is described by the hazard ratio (2).
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However, the specific shape of this association has not been iden-
tified, neither for relatively low exposures in developed Western
countries nor higher exposures observed globally.
Until recently, cohort studies of outdoor PM2.5 and mortality

were limited to areas with relatively low concentrations (<35 μg/m3)
compared with the entire global exposure range (3). This lack of
direct evidence at higher global PM2.5 concentrations motivated
the Integrated Exposure-Response model (IER) (4), which com-
bined information on PM2.5–mortality associations from nonout-
door PM2.5 sources, including secondhand smoke, household air
pollution from use of solid fuels, and active smoking. Specifically,
to construct the IER, estimates of the total mass of inhaled par-
ticles from each nonoutdoor source were converted into the
equivalent concentration in the ambient atmosphere. The IER
forms the basis of the estimates of disease burden attributable
to PM2.5 (e.g., 4 million deaths in 2015) in the global burden of
disease (GBD) (1), those of the World Health Organization
(WHO) (5), and in the quantification of impacts of policy sce-
narios on projected improvements in population health burden
and evaluation of air-quality standards (6, 7).
By using this approach, stable predictions of the hazard ratio

function can be obtained over the entire global range of outdoor
PM2.5; however, the IER requires risk information on sources
other than outdoor PM2.5 and assumes equal toxicity per unit
dose across these nonoutdoor sources. Risk assessments of
outdoor particles have assumed that toxicity is a function of mass
concentration alone (8, 9). The IER extended this assumption to
particle sources mainly originating from indoor sources, such as
secondhand smoking and heating/cooking, and to particle ex-
posure from active smoking. In addition, the IER assumes that
the dosing rate from cigarette smoking, a large intake of particles
over repeated short time periods per day, results in the same
toxicity as continually breathing the same total dose from the
atmosphere per day. Similar assumptions are required for ex-
posure to secondhand smoke and household pollution. For ex-
ample, the total particle dose from smoking a single cigarette
is assumed equivalent to breathing an ambient atmosphere of
667 μg/m3 for 24 h (4).
The IER formulation also assumes a counterfactual un-

certainty distribution, where the relative risk of morality at any
concentration is compared with the counterfactual concentra-
tion. The uncertainty distribution is defined as a uniform random
variable with lower and upper bounds specified by the average of
the minimum (2.4 μg/m3) and fifth percentile (5.9 μg/m3) con-
centrations of cohort studies where subjects are exposed to rel-
atively low values (3). This definition was adopted due to lack of
knowledge about the shape of the concentration–mortality as-
sociation at these lower levels.

We seek to relax many of the strong assumptions required by
the IER by relying solely on studies of outdoor PM2.5. First, we
established collaborations between 15 research groups globally
that have examined the relationship between long-term exposure
to outdoor PM2.5 and mortality (10–24). Each of these 15 re-
search groups independently conducted analyses to characterize
the shapes of PM2.5–mortality associations in their respective
cohorts using a hazard ratio function developed for health im-
pact assessment (25). Among these 15 cohorts is a study of
Chinese men (10) with long-term outdoor PM2.5 exposures up to
84 μg/m3, thus greatly extending the range of exposures observed
in cohort studies conducted in high-income countries in Europe
and North America. In 2015, 97% of the global population lived
in countries whose population-weighted outdoor exposure
was <84 μg/m3. Our within-cohort analysis focused on non-
accidental mortality as this outcome represents the total mor-
tality burden of PM2.5 exposure and provides enhanced statistical
power to characterize the shape of the PM2.5–mortality associ-
ations compared with any specific cause of death. Almost all
nonaccidental deaths were due to noncommunicable diseases
(NCDs) and lower respiratory infections (LRIs). We thus have
restricted our global estimates of excess deaths to this subgroup
of illnesses. We were also able to relax the need to assume a
counterfactual uncertainty distribution by directly examining the
shape of the concentration–mortality association at relatively low
levels included in several cohorts.
To complement information from these 15 cohorts, we also

extracted data from the published literature (i.e., hazard ratios
between PM2.5 and nonaccidental mortality) for an additional 26
cohorts where we did not have access to the subject level information
(24, 26–33). For the 15 within-cohort analyses, we relaxed the as-
sumption that concentration–mortality associations were linear
within each cohort. A linear association between exposure and
the logarithm of the baseline hazard ratio was assumed for the
remaining 26 cohorts. We then estimated the Global Exposure
Mortality Model (GEMM) as a common (possibly nonlinear)
hazard ratio model among the 41 cohorts by pooling predictions of
the hazard ratio among cohorts over their range of exposure (SI
Appendix, SI Methods), denoted as GEMM NCD+LRI.
For comparison with previous disease burden assessments, we

also constructed separate GEMMs for each of the five causes of
death that comprise the GBD attributable mortality estimates:
ischemic heart disease (IHD), stroke, chronic obstructive pul-
monary disease (COPD), lung cancer, and LRIs. The hazard
ratio and exposure information used by GBD2015 for outdoor
air pollution (3) was complemented with data on specific causes
of death, hazard ratios, and exposure from those studies where
we used the nonaccidental risk information but were not in-
cluded in the GBD2015 IER models. Four studies (11, 13, 17,
19) were included for LRI, three studies (10, 17, 31) for both
IHD and stroke, and two studies (10, 17) for COPD and lung
cancer. We assumed that the association between PM2.5 and the
logarithm of the baseline hazard was linear within each cohort in
a manner similar to that used by the IER (4).
We note that almost all (>99%) nonaccidental deaths in the 41

cohorts were due to noncommunicable diseases and LRIs (NCD+
LRI). Adult (>25 y) mortality rates based on this subgroup are used
when calculating excess mortality attributable to PM2.5 exposure for
the nonaccidental GEMM. Restriction to NCD+LRI causes of death
also addresses the issue that some countries have a much higher
proportion of communicable disease mortality compared with the 41
cohorts. We now denote the nonaccidental GEMM as GEMM
NCD+LRI and the GEMM for each of the five specific causes of as
GEMM 5-COD when referring to the models used to estimate the
combined population-attributable fraction based on the five
separate causes.
We refit GEMM NCD+LRI and each cause-specific GEMM

without the Chinese Male Cohort (10) to examine the sensitivity

Significance

Exposure to outdoor concentrations of fine particulate matter
is considered a leading global health concern, largely based on
estimates of excess deaths using information integrating ex-
posure and risk from several particle sources (outdoor and in-
door air pollution and passive/active smoking). Such
integration requires strong assumptions about equal toxicity
per total inhaled dose. We relax these assumptions to build risk
models examining exposure and risk information restricted to
cohort studies of outdoor air pollution, now covering much of
the global concentration range. Our estimates are severalfold
larger than previous calculations, suggesting that outdoor
particulate air pollution is an even more important population
health risk factor than previously thought.
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of our model predictions to this cohort, given that it incorporated a
much larger range in exposure than any other study (15–84 μg/m3).
We fit age-specific GEMMs for NCD+LRI, IHD, and stroke
mortality (SI Appendix, SI Methods) as cardiovascular risk factors,
including PM2.5, decline with age (4).
We estimated excess mortality rates and deaths associated

with a 100% reduction in 2015 PM2.5 exposures (34) based on
the GEMM and the IER model for each country and globally, a
burden analysis. We also examined a partial reduction in exposure
of 20%, a benefits analysis. PM2.5 exposure estimates for 2015 were
derived at a 0.1° by 0.1° grid globally based on fusion of satellite
based remote sensing information, chemical transport model sim-
ulations, and spatially varying calibration to ground monitoring data
using hierarchical Bayesian methods (34). The mathematical form
of the GEMM and IER are described in Methods.

Results
GEMM NCD+LRI hazard ratio predictions increased with
PM2.5 concentration, displaying a supralinear association over
lower exposures and then a near-linear association at higher
concentrations (Fig. 1, Top). We used a counterfactual concen-
tration of 2.4 μg/m3, the lowest observed concentration in any of
the 41 cohorts (SI Appendix, Table S1). Below the counterfactual,
we assumed no change in the hazard ratio. GEMM LRI and IHD
hazard ratio predictions were larger than those for COPD, lung
cancer, and stroke, which were similar to each other (Fig. 1, Bottom).
GEMM hazard ratio predictions were larger than those of the

IER for all concentrations examined except for concentrations
<10 μg/m3 for stroke with predictions declining with age for all
models (SI Appendix, Fig. S1). In each country, the excess PM2.5
mortality rate (deaths per 100,000 population) was calculated as the
product of the cause-specific baseline mortality rate and population-
attributable fraction (1 minus the inverse of the hazard ratio
function) for the age-adjusted GEMM NCD+LRI, GEMM 5-
COD, and IER models. For each model, we used the same esti-
mates of exposure and baseline mortality rates. Thus, any differences
were only due to the choice of hazard ratio model. The larger
GEMM hazard ratio predictions resulted in higher country-specific
estimates of the excess mortality rates compared with the IER-based
estimates (Fig. 2). However, the correlation between excess rate
estimates for the IER and GEMM NCD+LRI was high (0.95)
and higher still between the IER and GEMM 5-COD (0.98).
We applied the GEMM and IER models for each country and

globally to assess the excess mortality burdens related to 2015
exposure estimates (34), a 100% reduction in exposure in each
country to the counterfactual exposure, and for a partial rollback
of concentrations by 20% in each country, equivalent to
achieving the WHO PM2.5 air-quality first Interim Target of
35 μg/m3 at the global level (benefit analysis). We report these
results grouped by global regions (Table 1). The population-
weighted average PM2.5 concentrations vary among groupings
of countries from the lowest in Canada/United States (7.9 μg/m3)
and Oceania (8.0 μg/m3) to the highest in China (57.5 μg/m3) and

Fig. 1. GEMM hazard ratio predictions over PM2.5 exposure range for
noncommunicable diseases plus LRIs (NCD+LRI). (Top) With 95% confidence
interval (gray shaded area). (Bottom) GEMM predictions for each of the five
causes of death displayed. GEMM NCD+LRI, GEMM IHD, and GEMM stroke
were based on the 60- to 64-y-old age group.

Fig. 2. Country-specific estimates of excess mortality rates associated with
100% reduction to the counterfactual concentration in population-
weighted country average fine particulate matter concentrations by age-
adjusted GEMM NCD+LRI vs. IER (blue dots) and GEMM 5 Causes of Death
(COD) vs. IER (red dots). Dotted line represents 1:1 association.
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India (74.0 μg/m3). Estimates of the number of excess (averted)
deaths based on the GEMM NCD+LRI model were greater
than the GEMM 5-COD model and still greater than the IER
model for each group of countries, assuming either a 100% ex-
posure reduction or a partial reduction of 20% (Table 1).
However, the ratio of averted deaths based on the GEMM 5-
COD model to the GEMM NCD+LRI model increased from
between the 20% and 100% reduction scenarios, suggesting that
the GEMM 5-COD model was capturing a higher percentage of
the GEMM NCD+LRI averted deaths for smaller reductions in
exposure. The corresponding ratios between either the IER or
GEMM 5-COD to the GEMM NCD+LRI decreased from the
100% to 20% reduction scenarios in all regions except the two
with the lowest exposures, suggesting that the IER-based esti-
mates were capturing fewer of the GEMM NCD+LRI predicted
averted deaths at higher concentrations.
We next examined the sensitivity of the GEMM hazard ratio

predictions to the inclusion/exclusion of the Chinese cohort that
covered much of the global exposure distribution. The GEMM
NCD+LRI was insensitive to the exclusion of the Chinese co-
hort, as were the GEMM COPD and lung cancer models (SI
Appendix, Fig. S6). However, both the IHD and stroke GEMM
predictions were lower if the Chinese cohort data were not included
in the model fitting (SI Appendix, Fig. S6). Country-specific esti-
mates of the excess mortality rates were almost perfectly correlated
between models, including and excluding the Chinese cohort
(0.998), with a 14% average reduction in the estimate of the excess
mortality rate among countries when the cohort was not included.
Additional sensitivity analyses are presented in SI Appendix.
Globally, the GEMM NCD+LRI estimates 8.9 million avoided

deaths [95% confidence interval (CI): 7.5–10.3] deaths in 2015.

The GEMM 5-COD estimates 6.9 million avoided deaths
(95% CI: 4.9–8.5), and the IER estimates 4.0 million avoids
deaths (95% CI: 3.3–4.8). We note that even in those countries
from which most of the cohorts were conducted (Canada,
United States, and Western Europe), the ratio of averted deaths
from the IER to GEMM NCD+LRI was 0.40–0.45, based on a
100% exposure reduction (Table 1). A similar ratio was observed
globally (0.45).

Discussion
To address the disease burden attributable to outdoor air pol-
lution, governments and policymakers around the world need
accurate estimates of exposure–response functions that relate
changes in outdoor air pollution concentrations to changes in
health risks. To date, the IER has served this purpose, but this
method has several limitations, including the use of exposure/
health-risk data from sources other than outdoor air pollution.
Here, we demonstrated that stable hazard ratio predictions can
be obtained across the global range of PM2.5 concentrations
using only studies of outdoor air pollution using an alternative
hazard ratio model and method of statistical inference (25)
compared to that used for the IER (3,4). By using a common
statistical approach to characterizing the shape of exposure–re-
sponse relationships within cohorts and then combined across
cohorts, the GEMM provides a detailed examination of the
shape of the outdoor exposure–mortality association, spanning
the global distribution of exposure. Importantly, the manner in
which we constructed the GEMM and characterized its un-
certainty (SI Appendix, SI Methods and Fig. S7) can be directly
implemented in currently available computer software used for
air-quality health impact assessments, such as those used by the

Table 1. Population-weighted average 2015 PM2.5 concentrations by country groupings, excess deaths (in thousands) for a 100% and
20% reduction in exposure based on GEMM NCD+LRI, GEMM 5-COD, and IER

Region Rollback, % PM2.5 exposure, μg/m3 GEMM NCD+LRI GEMM 5-COD IER
Ratio: IER to GEMM

NCD+LRI

Ratio: GEMM 5-
COD to GEMM

NCD+LRI

Canada, USA 100 7.9 213 121 95 0.45 0.57
20 42 28 20 0.48 0.68

Caribbean 100 20.2 39 28 17 0.44 0.70
20 6 5 2 0.32 0.91

Latin America 100 17.5 365 228 152 0.42 0.63
20 58 47 19 0.33 0.81

Africa 100 36.1 691 517 280 0.41 0.75
20 111 102 34 0.31 0.92

Western Europe 100 13.4 439 245 176 0.40 0.56
20 70 50 34 0.34 0.71

Eastern Europe 100 23.2 208 154 99 0.48 0.74
20 32 28 10 0.32 0.88

Russia and EIT* 100 21.8 457 402 257 0.56 0.88
20 70 72 26 0.37 1.03

Middle East 100 62.0 428 318 166 0.39 0.74
20 65 56 15 0.24 0.86

China 100 57.5 2,470 1,946 1,110 0.45 0.79
20 409 368 122 0.30 0.90

India 100 74.0 2,219 1,867 1,022 0.46 0.84
20 359 329 108 0.30 0.92

Asia (other) 100 39.1 1,367 1,053 620 0.45 0.77
20 216 203 69 0.32 0.94

Oceania 100 8.0 18 11 7 0.41 0.60
20 4 3 2 0.58 0.69

Global 100 43.7 8,915 6,889 4,002 0.45 0.58
20 1,443 1,283 452 0.31 0.89

Ratio of excess deaths between IER to GEMM NCD+LRI and GEMM 5-COD to GEMM NCD+LRI also presented.
*EIT, Economics in Transition as former Soviet states.
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US Environmental Protection Agency (USEPA) (9), Health
Canada (35), and the WHO (36).
One of the most important implications of our method is that

the GEMMpredicted mortality hazard ratios that were almost always
larger than those of the previous IER model, with much larger risks
observed at higher PM2.5 concentrations (SI Appendix, Fig. S1).
Specifically the global estimates of mortality attributable to am-
bient fine particulate air pollution (8.9 million, 95% CI: 7.5–10.3)
were 120% higher than previous estimates and suggest compara-
ble impact to the leading global mortality risk factors of diet (10.3
million deaths, 95% CI: 8.8–11.9) and cigarette smoking (6.3
million deaths; 95% CI: 5.7–7.0) (1). The GEMM estimates also
suggested that health benefits associated with reductions in PM2.5
concentrations are much greater than previously suggested, par-
ticularly in areas with elevated concentrations such as India or
China (Table 1).
In particular, the IER displayed the most curvature for IHD

and stroke, in part due to the inclusion of hazard ratios for active
smoking, which are proportionately not much larger than those
for outdoor air pollution but are assigned much higher PM2.5
exposures (4). Since the GEMM does not rely on information
related to active smoking, it is not influenced by these patterns.
Similarly, the GEMM does not rely on information from sec-
ondhand smoking or household heating and cooking studies.
Collectively, these additional sources of exposure information
included in the IER reduce hazard ratio estimates compared
with the GEMM method, which relies only on data from cohort
studies of outdoor air pollution.
A second important feature of our GEMM method relates to

the fact that it incorporates outdoor air pollution data across the
most of the global exposure range, covering 97% of the global
population, owing to the inclusion of a cohort study in China
(10). Importantly, our sensitivity analyses suggest that the
GEMM was not sensitive to our selection of an ensemble of two
models from the Chinese cohort for NCD+LRI causes, but was
somewhat sensitive for IHD and stroke mortality (SI Appendix,
Fig. S6). Moving forward, it is important that additional cohort
studies be conducted in these higher-exposure environments to
corroborate the results of the Chinese cohort with regard to both
the shape and the magnitude of health risks associated with PM2.5.
Our detailed analyses using subject-level data in 15 cohorts

also provides direct evidence to characterize the shape of the
exposure–response relationship at relatively low concentrations,
an innovation of direct relevance to setting of air-quality stan-
dards. Ten of the 15 cohorts had exposures less than the WHO
ambient air-quality guideline of 10 μg/m3, and in each case we
observed an increase in the hazard ratio between their respective
minimum concentrations and 10 μg/m3. Such evidence would not
have been possible without these detailed within-cohort analyses.
In comparison, the GBD2015 version of the IER model in-
corporated a counterfactual uncertainty distribution character-
ized by a uniform random variable with lower/upper bounds of
2.4 and 5.9 μg/m3, respectively. These limits were based on the
average of the minimum and fifth percentiles of the exposure
distributions among cohorts with relatively low concentrations (3).
This counterfactual distribution was intended to describe uncertainty
in the shape at low concentrations given absence of direct evidence.
Traditionally, quantitative estimates of the global mortality

impacts of outdoor air pollution have been based on five specific
causes of death, including lung cancer, IHD, COPD, stroke, and
LRI. In this study, estimates of excess deaths based on baseline
mortality rates for NCDs plus LRIs (NCD+LRI) were 30%
higher than those based on the five specific causes of death using
the GEMM. This was due, in part, to the lower baseline mor-
tality rate for the five specific causes of death compared with
NCD+LRI (52%). However, this observation also suggests that
exposure to PM2.5 is contributing to mortality from causes other
than the five examined here and in the GBD (1). This is an

interesting finding which supports emerging evidence that other
diseases not yet included in most impact analyses are related to
PM2.5 exposure (37–39).
In summary, the GEMMmethod presented in this study addresses

many of the limitations associated with the previous IER model and
provides a means of quantifying the health impacts of outdoor air
pollution. Importantly, this approach suggests that the health benefits
of reducing PM2.5 are likely much larger than previously assumed,
owing to much stronger relationships between air pollution and
mortality at higher concentrations. The implications of this finding
are particularly significant for countries with the highest air-pollution
concentrations, as the potential health benefits of air-quality im-
provements in these areas are larger than previously recognized.

Methods
We describe here he mathematical form of the IER and GEMM.

The IER model has the form IER(z) = 1 + π(1 − exp{−φzδ}), where z =max(0,
PM2.5 − cf) with cf ∼ U(2.4,5.9) denoting a uniform uncertainty distribution for
the counterfactual, assuming no association <2.4 μg/m3. The maximum hazard
ratio is 1 + π, with the rate of increase for low concentrations governed by φ and
for higher concentrations by δ. The unknown parameters are estimated by
Bayesian methods, assuming noninformative gamma distributed priors using the
computer program Stan (40). The IER was designed to estimate health burden
associated not only with ambient PM2.5 exposures, but also secondhand smoke
and household air pollution; thus, the inclusion of risk information from these
other particle types. IERs can take sublinear, near-linear, supralinear, and sigmodal
shapes depending on the values of these parameters. For the 2015 version of the
IER, a random effects error structure was assumed with random effects specific to
each particle source (outdoor air pollution, secondhand smoke, household air
pollution, and active smoking) (3). This additional risk information assisted in
obtaining more stable risk predictions with narrower uncertainty intervals under
the fully Bayesian modeling framework.

Standard computer software is not available to estimate the unknown IER
parameters under a frequentist framework for survival models when ex-
amining subject-level cohort data. A Bayesian Monte Carlo approach, such as
that used in Stan, is not always practical to usewhen the cohort is large due to
computer processing limitations. We therefore needed to develop an al-
ternative hazard ratio model and method of statistical inference.

We motivated the development of the GEMM through the Log-Linear (LL)
model, as this is the most commonly used model to estimate excess deaths
from exposure to ambient PM2.5 (8, 9). The LL model has the form LL(z) = exp
{βz}, where z = max(0, PM2.5 − cf), with cf representing the counterfactual
PM2.5 concentration assuming no association below cf and unit hazard ratio
when PM2.5 = cf. GEMM is an extension of the LL model by including non-
linear shapes defined by transformations, T(z), of concentration. Our model
has the form: GEMM(z) = exp{θT(z)}. We consider transformations that cover
the variety of shapes modeled by the IER, which we also suggest are useful
for health impact assessment. We describe two forms of the model, one
when analyzing within cohort information and another for pooling hazard
ratio predictions among cohorts.

The association between concentrations of PM2.5 and mortality for the
analysis of a specific cohort is described by a class of hazard ratio functions
(25): R(z) = exp{θT(z)}, where T(z) = f(z)ω(z), with f(z) = z or f(z) = log(z + 1),
such that R(z) = 1 when z = 0 for either form of f(z). Here, ω(z) = 1/(1 + exp
{−(z − μ)/(τr)}) is a logistic weighting function of z and two parameters (μ,τ)
with r representing the range in the pollutant concentrations. The param-
eter τ controls the amount of curvature in ω with μ controlling the shape.
The set of values of (f,μ,τ) define a shape of the mortality–PM2.5 association.
The estimation method is based on a routine that selects multiple values of
(f,μ,τ), and, given these values, estimates of θ and its SE are obtained by
using standard computer software that fit the Cox proportional hazards
model (2). We can use standard computer software since we have formu-
lated the estimation problem as a transformation of concentration, T(z) = f
(z)ω(z), and a single unknown parameter θ. An ensemble model is calculated
by the weighted average of the predictions of all models examined at any
concentration with weights defined by the likelihood function value. Un-
certainty estimates of the ensemble model predictions are obtained by
bootstrap methods, which incorporate both sampling and model shape
uncertainty (25). For large negative values of μ, ω(z) ∼ 1, and in such cases,
T(z) ∼ z when f(z) = z, and T(z) ∼ log(z + 1) when f(z) = log(z + 1). We thus
obtain a family of shapes including approximately linear, log linear,
supralinear and sublinear, and S-shaped in concentration. Details of the set
of values of (f,μ,τ) and the estimation routine are described elsewhere (25).
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We define a modification of the hazard ratio model used for the analysis
of subject level data within each cohort as our common model among co-
horts: R(z) = exp{θT(z)}, where T(z) = log(1 + z/α)ω(z). We have replaced the
two forms of f(z) that we used in the analysis of the subject level within
cohort data by a single mathematical form log(1 + z/α) defined by an ad-
ditional parameter α. Here, α controls the amount of curvature in R with less
curvature for larger values of α. For larger values of α, the model is near
linear for low concentrations and for low values of μ. However, changes in
the hazard ratio decline with increasing concentrations beyond the range of
the data (SI Appendix, Fig. S9). We do this so that predictions of the hazard
ratio beyond the observed exposure range have a logarithmic form with
diminishing changes in association as exposure increases. This structure limits
the size of the predicted hazard ratio over concentration ranges where we
have no observations. Estimates of R(z) are obtained by specifying values in
the parameters (α,μ,τ) that define the shape of the transformations and
given these shapes, θ is estimated by using standard computer software. An
ensemble estimate is then constructed of all of the shapes examined
weighted by their respective likelihood values. Bootstrap methods were
used to obtain uncertainty intervals (SI Appendix, SI Methods). We con-
strained the amount of curvature in our fitted model by restricting the se-
lection of values of (α,μ,τ) (SI Appendix, SI Methods).

The ensemble model predictions are a weighted average of all models
examined. To simplify the presentation of our results and their use for
burden/benefits analyses, we suggest fitting a single algebraic function of the
same form as the GEMM to the ensemble model predictions over the concentration

rangeof interest forhealthburdenassessment. In thiswork,weuse theconcentration
interval 2.4–84 μg/m3 by 0.1-μg/m3 increments. We simplified the model somewhat
by absorbing the concentration range r with the parameter τ by setting rτ = ν. We
then estimated the parameters by standard nonlinear regressionmethods [R routine
nlsLM from the package “minpack.lm” (41)]. We attribute all of the uncertainty in
the ensemble model prediction to θ by first regressing the SE of the logR(z) pre-
dictions among the bootstrap samples at each concentration on the logR(z)
predictions themselves. The slope of this regression is designated as the SE of
our estimate of θ. The adequacy of our model approximation is examined by
plotting the ensemble and uncertainty intervals overlaid with the approximate
model average and approximate uncertainty intervals (SI Appendix, Fig. S7).

Since the hazard ratio declines with age for cardiovascular risk factors, such
as PM2.5, we constructed age-specific GEMMs in a manner similar to that
used by the GBD program (1) (SI Appendix, SI Methods). We did this for the
GEMM NCD+LRI and the IHD and stroke GEMMs. We only age-adjusted the
proportion of cardiovascular deaths in each of the 41 cohorts for age for the
GEMM NCD+LRI (SI Appendix, SI Methods). Thus, age-adjusted GEMM NCD+LRI
displayed less variation than those for IHD and stroke (SI Appendix, Fig. S1).

Estimates of excess deaths were determined by the product of the size
of country population, the age-specific annual mortality rate, and the
population attribution fraction (one minus the inverse of the relative risk
function). We interpret the hazard ratio functions obtained from cohort
studies as relative risks to use the population attributable risk definition since
the annual baseline mortality rates are small (SI Appendix).
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