14 research outputs found

    Autonomous metabolic reprogramming and oxidative stress characterize endothelial dysfunction in acute myocardial infarction

    Get PDF
    Background: Compelling evidence has accumulated on the role of oxidative stress on the endothelial cell (EC) dysfunction underlying acute coronary syndrome. However, unveiling the underlying metabolic determinants has been hampered by the scarcity of appropriate cell models to address cell-autonomous mechanisms of ED dysfunction. Methods: We have generated endothelial cells derived from thrombectomy specimens from patients affected with acute myocardial infarction (AMI) and conducted phenotypical and metabolic characterization, focused on central carbon metabolism. Results: AMI-derived endothelial cells (AMIECs), but not control healthy coronary endothelial cells, display impaired growth, migration and tubulogenesis. Metabolically, AMIECs displayed augmented reactive oxygen species (ROS) and glutathione intracellular content, along with a diminished glucose consumption coupled to high lactate production. Consistent with diminished glycolysis in AMIECs, the protein levels of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase type 3, PFKFB3, were downregulated. In contrast, PFKFB4 levels were upregulated, suggesting a shunting of glycolysis towards the pentose phosphate pathway (PPP), supported by upregulation in AMIECs of G6PD, the key enzyme in the oxidative branch of the PPP. Further, the glutaminolytic enzyme GLS was upregulated in AMIECs, providing a mechanistic explanation for the observed increase in glutathione content. Finally, AMIECs displayed a significantly higher mitochondrial membrane potential than control ECs, which, together with high ROS levels, suggest a highly coupled mitochondrial activity in patient ECs. Conclusions: We suggest high mitochondrial proton coupling underlies the abnormally high production of ROS, balanced by PPP- and glutaminolysis-driven synthesis of glutathione, as a primary, cell-autonomous abnormality driving EC dysfunction in AMI. Funding: European Commission Horizon 2020; CIBER- Carlos III National Institute of Health, Spain; Ministerio de Economia y Competitividad (MINECO) and Ministerio de Ciencia e Innovación, Spain; Generalitat de Catalunya-AGAUR, Catalonia; Plataforma Temática Interdisciplinar Salud Global (PTI-SG), Spain; British Heart Foundation, UK. </p

    Integrating systemic and molecular levels to infer key drivers sustaining metabolic adaptations

    Full text link
    Metabolic adaptations to complex perturbations, like the response to pharmacological treatments in multifactorial diseases such as cancer, can be described through measurements of part of the fluxes and concentrations at the systemic level and individual transporter and enzyme activities at the molecular level. In the framework of Metabolic Control Analysis (MCA), ensembles of linear constraints can be built integrating these measurements at both systemic and molecular levels, which are expressed as relative differences or changes produced in the metabolic adaptation. Here, combining MCA with Linear Programming, an efficient computational strategy is developed to infer additional non-measured changes at the molecular level that are required to satisfy these constraints. An application of this strategy is illustrated by using a set of fluxes, concentrations, and differentially expressed genes that characterize the response to cyclin-dependent kinases 4 and 6 inhibition in colon cancer cells. Decreases and increases in transporter and enzyme individual activities required to reprogram the measured changes in fluxes and concentrations are compared with down-regulated and up-regulated metabolic genes to unveil those that are key molecular drivers of the metabolic response

    Quantitative Proteomic Approach Reveals Altered Metabolic Pathways in Response to the Inhibition of Lysine Deacetylases in A549 Cells under Normoxia and Hypoxia.

    Get PDF
    Growing evidence is showing that acetylation plays an essential role in cancer, but studies on the impact of KDAC inhibition (KDACi) on the metabolic profile are still in their infancy. Here, we analyzed, by using an iTRAQ-based quantitative proteomics approach, the changes in the proteome of KRAS-mutated non-small cell lung cancer (NSCLC) A549 cells in response to trichostatin-A (TSA) and nicotinamide (NAM) under normoxia and hypoxia. Part of this response was further validated by molecular and biochemical analyses and correlated with the proliferation rates, apoptotic cell death, and activation of ROS scavenging mechanisms in opposition to the ROS production. Despite the differences among the KDAC inhibitors, up-regulation of glycolysis, TCA cycle, oxidative phosphorylation and fatty acid synthesis emerged as a common metabolic response underlying KDACi. We also observed that some of the KDACi effects at metabolic levels are enhanced under hypoxia. Furthermore, we used a drug repositioning machine learning approach to list candidate metabolic therapeutic agents for KRAS mutated NSCLC. Together, these results allow us to better understand the metabolic regulations underlying KDACi in NSCLC, taking into account the microenvironment of tumors related to hypoxia, and bring new insights for the future rational design of new therapies

    De novo MYC addiction as an adaptive response of cancer cells to CDK4/6 inhibition

    Get PDF
    Cyclin‐dependent kinases (CDK) are rational cancer therapeutic targets fraught with the development of acquired resistance by tumor cells. Through metabolic and transcriptomic analyses, we show that the inhibition of CDK4/6 leads to a metabolic reprogramming associated with gene networks orchestrated by the MYC transcription factor. Upon inhibition of CDK4/6, an accumulation of MYC protein ensues which explains an increased glutamine metabolism, activation of the mTOR pathway and blunting of HIF‐1α‐mediated responses to hypoxia. These MYC‐driven adaptations to CDK4/6 inhibition render cancer cells highly sensitive to inhibitors of MYC, glutaminase or mTOR and to hypoxia, demonstrating that metabolic adaptations to antiproliferative drugs unveil new vulnerabilities that can be exploited to overcome acquired drug tolerance and resistance by cancer cells

    Cysteine and Folate metabolism are targetable vulnerabilities of metastatic colorectal cancer

    Get PDF
    With most cancer-related deaths resulting from metastasis, the development of new therapeutic approaches against metastatic colorectal cancer (mCRC) is essential to increasing patient survival. The metabolic adaptations that support mCRC remain undefined and their elucidation is crucial to identify potential therapeutic targets. Here, we employed a strategy for the rational identification of targetable metabolic vulnerabilities. This strategy involved first a thorough metabolic characterisation of same-patient-derived cell lines from primary colon adenocarcinoma (SW480), its lymph node metastasis (SW620) and a liver metastatic derivative (SW620-LiM2), and second, using a novel multi-omics integration workflow, identification of metabolic vulnerabilities specific to the metastatic cell lines. We discovered that the metastatic cell lines are selectively vulnerable to the inhibition of cystine import and folate metabolism, two key pathways in redox homeostasis. Specifically, we identified the system xCT and MTHFD1 genes as potential therapeutic targets, both individually and combined, for combating mCRC

    Methylseleninic acid promotes antitumour effects via nuclear FOXO3a translocation through Akt inhibition

    Get PDF
    Selenium supplement has been shown in clinical trials to reduce the risk of different cancers including lung carcinoma. Previous studies reported that the antiproliferative and pro-apoptotic activities of methylseleninic acid (MSA) in cancer cells could be mediated by inhibition of the PI3K pathway. A better understanding of the downstream cellular targets of MSA will provide information on its mechanism of action and will help to optimize its use in combination therapies with PI3K inhibitors. For this study, the effects of MSA on viability, cell cycle, metabolism, apoptosis, protein and mRNA expression, and reactive oxygen species production were analysed in A549 cells. FOXO3a subcellular localization was examined in A549 cells and in stably transfected human osteosarcoma U2foxRELOC cells. Our results demonstrate that MSA induces FOXO3a nuclear translocation in A549 cells and in U2OS cells that stably express GFP-FOXO3a. Interestingly, sodium selenite, another selenium compound, did not induce any significant effects on FOXO3a translocation despite inducing apoptosis. Single strand break of DNA, disruption of tumour cell metabolic adaptations, decrease in ROS production, and cell cycle arrest in G1 accompanied by induction of apoptosis are late events occurring after 24h of MSA treatment in A549 cells. Our findings suggest that FOXO3a is a relevant mediator of the antiproliferative effects of MSA. This new evidence on the mechanistic action of MSA can open new avenues in exploiting its antitumour properties and in the optimal design of novel combination therapies. We present MSA as a promising chemotherapeutic agent with synergistic antiproliferative effects with cisplatin. (C) 2015 Elsevier Ltd. All rights reserved.Ministerio de Ciencia e Innovacion, Spain [SAF2011-25726]; Agencia de Gestio d'Ajuts Universitaris i de Recerca (AGAUR)-Generalitat de Catalunya [2014SGR1017]; Ministerio de Economia y Competitividad, Spain [SAF2014-56059-R]; Fundacao para a Ciencia e a Tecnologia (FCT) Research Center [UID/BIM/04773/2013CBMR 1334]; National Institute of Health, USA [1R01CA118434-01A2, 1P01CA163223-01A1]; National Science Foundation, USA [EPS-0447479]; FCT [SFRH/BPD/84634/2012]; prize ICREA Academia for excellence in research; ICREA Foundation-Generalitat de Cataluny

    Study of the metabolic reprogramming associated to metastasis in colon cancer

    Get PDF
    [eng] Metastasis is the main cause of cancer-related deaths and it is of great biomedical importance to develop new therapeutic strategies that specifically target metastatic cells. Therefore, a better comprehension of the process of how the disseminated tumour cells manage to survive the circulation and initiate new tumours is crucial. Genetic alterations are established to be the main driving force of tumorigenesis, while when it comes to metastasis, fewer genetic changes are identified and the metabolic adaptation emerges as an important hallmark. With the aim to elucidate the metabolic reprogramming supporting metastasis in colorectal cancer, we performed a thorough metabolic characterisation in vitro and in vivo of a primary colon cancer cell line (SW480), a cell line derived from the lymph node metastasis of the same patient (SW620) and a metastatically enriched derivative of the latter (LiM2). We revealed that the metastatic cell lines present enhanced glucose, glutamine and mitochondrial metabolism, and present higher metabolic flexibility. Additionally, from a systems biology approach, the metabolic dependencies of the metastatic cell lines were identified and validated in vitro, using a healthy colon cell line (NCM460). Specifically, we determined that the metastatic cell lines are selectively vulnerable to the inhibition of cysteine import and folate metabolism, among other targets. Together, the thesis presented here contributes to the knowledge of the mechanisms underlying metastasis as well as the development of new therapies capable of selectively blocking the metastatic spread of colorectal cancer

    Targeting the Metabolic Adaptation of Metastatic Cancer

    No full text
    Metabolic adaptation is emerging as an important hallmark of cancer and metastasis. In the last decade, increasing evidence has shown the importance of metabolic alterations underlying the metastatic process, especially in breast cancer metastasis but also in colorectal cancer metastasis. Being the main cause of cancer-related deaths, it is of great importance to developing new therapeutic strategies that specifically target metastatic cells. In this regard, targeting metabolic pathways of metastatic cells is one of the more promising windows for new therapies of metastatic colorectal cancer, where still there are no approved inhibitors against metabolic targets. In this study, we review the recent advances in the field of metabolic adaptation of cancer metastasis, focusing our attention on colorectal cancer. In addition, we also review the current status of metabolic inhibitors for cancer treatment

    The importance of post-translational modifications in systems biology approaches to identify therapeutic targets in cancer metabolism

    No full text
    International audienceCancer metabolism is reprogrammed to fulfill the needs of proliferation and migration, which is accomplished through different levels of regulation. In recent years, new advances in protein post-translational modifications (PTMs) research have revealed a complex layer of regulatory mechanisms through which PTMs control cell signaling and metabolic pathways, contributing to the diverse metabolic phenotypes found in cancer. Despite the efficacy of current modeling approaches to study cancer metabolism they still lack the capacity to integrate PTMs in their predictions. Here we will review the importance of PTMs in cancer metabolic reprogramming and suggest ways in which computational predictions could be enhanced through the integration of PTMs

    De novo MYC addiction as an adaptive response of cancer cells to CDK4/6 inhibition

    No full text
    Cyclin‐dependent kinases (CDK) are rational cancer therapeutic targets fraught with the development of acquired resistance by tumor cells. Through metabolic and transcriptomic analyses, we show that the inhibition of CDK4/6 leads to a metabolic reprogramming associated with gene networks orchestrated by the MYC transcription factor. Upon inhibition of CDK4/6, an accumulation of MYC protein ensues which explains an increased glutamine metabolism, activation of the mTOR pathway and blunting of HIF‐1α‐mediated responses to hypoxia. These MYC‐driven adaptations to CDK4/6 inhibition render cancer cells highly sensitive to inhibitors of MYC, glutaminase or mTOR and to hypoxia, demonstrating that metabolic adaptations to antiproliferative drugs unveil new vulnerabilities that can be exploited to overcome acquired drug tolerance and resistance by cancer cells
    corecore