105 research outputs found

    U-Pb SHRIMP zircon dating of Grenvillian metamorphism in Western Sierras Pampeanas (Argentina) : correlation with the Arequipa-Antofalla craton and constraints on the extent of the Precordillera Terrane

    Get PDF
    The Sierras Pampeanas of Argentina, the largest outcrop of pre-Andean crystalline basement in southern South America, resulted from plate interactions along the proto-Andean margin of Gondwana, from as early as Mesoproterozoic to Late Paleozoic times (e.g., Ramos, 2004, and references therein). Two discrete Paleozoic orogenic belts have been recognized: the Early Cambrian Pampean belt in the eastern sierras, and the Ordovician Famatinian belt, which partially overprints it to the west (e.g., Rapela et al., 1998). In the Western Sierras Pampeanas, Mesoproterozoic igneous rocks (ca. 1.0–1.2 Ga) have been recognized in the Sierra de Pie de Palo (Fig. 1) (McDonough et al., 1993 M.R. McDonough, V.A. Ramos, C.E. Isachsen, S.A. Bowring and G.I. Vujovich, Edades preliminares de circones del basamento de la Sierra de Pie de Palo, Sierras Pampeanas occidentales de San Juán: sus implicancias para el supercontinente proterozoico de Rodinia, 12° Cong. Geol. Argentino, Actas vol. 3 (1993), pp. 340–342.McDonough et al., 1993, Pankhurst and Rapela, 1998 and Vujovich et al., 2004) that are time-coincident with the Grenvillian orogeny of eastern and northeastern North America (e.g., Rivers, 1997 and Corrievau and van Breemen, 2000). These Grenvillian-age rocks have been considered to be the easternmost exposure of basement to the Precordillera Terrane, a supposed Laurentian continental block accreted to Gondwana during the Famatinian orogeny (Thomas and Astini, 2003, and references therein). However, the boundaries of this Grenvillian belt are still poorly defined, and its alleged allochthoneity has been challenged (Galindo et al., 2004). Moreover, most of the Grenvillian ages so far determined relate to igneous protoliths, and there is no conclusive evidence for a Grenvillian orogenic belt, other than inferred from petrographic evidence alone (Casquet et al., 2001). We provide here the first evidence, based on U–Pb SHRIMP zircon dating at Sierra de Maz, for a Grenville-age granulite facies metamorphism, leading to the conclusion that a continuous mobile belt existed throughout the proto-Andean margin of Gondwana in Grenvillian times

    Engineering conductive protein films through nanoscale self-assembly and gold nanoparticles doping

    Full text link
    Protein-based materials are usually considered as insulators, although conductivity has been recently shown in proteins. This fact opens the door to develop new biocompatible conductive materials. While there are emerging efforts in this area, there is an open challenge related to the limited conductivity of protein-based systems. This work shows a novel approach to tune the charge transport properties of protein-based materials by using electron-dense AuNPs. Two strategies are combined in a unique way to generate the conductive solid films: (1) the controlled self-assembly of a protein building block; (2) the templating of AuNPs by the engineered building block. This bottom-up approach allows controlling the structure of the films and the distribution of the AuNPs within, leading to enhanced conductivity. This work illustrates a promising strategy for the development of effective hybrid protein-based bioelectrical materialsThis work was partially supported by the European Research Council ERC-CoG-648071-ProNANO, ERC-PoC-841063-NIMM, Agencia Estatal de Investigación, Spain (PID2019- 111649RB-I00; and MAT2017-88693-R), and the Basque Government (Elkartek KK-2017/00008), E.L-M thanks the Spanish Ministry of Science and Innovation for the FPI grant (BES-2017-079646). This work was performed under the Maria de Maeztu Units of Excellence Program from the Spanish State Research Agency – Grant No. MDM-2017-0720 (CIC biomaGUNE) and SEV-2016-0686 (IMDEA Nanociencia

    A randomized trial of the discontinuation of primary and secondary prophylaxis against Pneumocystis carinii pneumonia after highly active antiretroviral therapy in patients with HIV infection

    Get PDF
    Background: Prophylaxis against Pneumocystis carinii pneumonia is indicated in patients with human immunodeficiency virus (HIV) infection who have less than 200 CD4 cells per cubic millimeter and in those with a history of P. carinii pneumonia. However, it is not clear whether prophylaxis can be safely discontinued after CD4 cell counts increase in response to highly active antiretroviral therapy. Methods: We conducted a randomized trial of the discontinuation of primary or secondary prophylaxis against P. carinii pneumonia in HIV-infected patients with a sustained response to antiretroviral therapy, defined by a CD4 cell count of 200 or more per cubic millimeter and a plasma HIV type 1 (HIV-1) RNA level of less than 5000 copies per milliliter for at least three months. Prophylactic treatment was restarted if the CD4 cell count declined to less than 200 per cubic millimeter. Results: The 474 patients receiving primary prophylaxis had a median CD4 cell count at entry of 342 per cubic millimeter, and 38 percent had detectable HIV-1 RNA. After a median follow-up period of 20 months (388 person-years), there had been no episodes of P. carinii pneumonia in the 240 patients who discontinued prophylaxis (95 percent confidence interval, 0 to 0.85 episode per 100 person-years). For the 113 patients receiving secondary prophylaxis, the median CD4 cell count at entry was 355 per cubic millimeter, and 24 percent had detectable HIV-1 RNA. After a median follow-up period of 12 months (65 person-years), there had been no episodes of P. carinii pneumonia in the 60 patients who discontinued prophylaxis (95 percent confidence interval, 0 to 4.57 episodes per 100 person-years). Conclusions: In HIV-infected patients receiving highly active antiretroviral therapy, primary and secondary prophylaxis against P. carinii pneumonia can be safely discontinued after the CD4 cell count has increased to 200 or more per cubic millimeter for more than three months

    Leaf litter decomposition of native and introduced tree species of contrasting quality in headwater streams: How does the regional setting matter?

    Get PDF
    Terrestrial plant litter is important in sustaining stream food webs in forested headwaters. Leaf litter quality often decreases when native species are replaced by introduced species, and a lower quality of leaf litter inputs may alter litter decomposition at sites afforested with non-native species. However, since detritivore composition and resource use plasticity may depend on the prevalent litter inputs, the extent of the alteration in decomposition can vary between streams. We tested 2 hypotheses using 2 native and 3 introduced species of tree differing in quality in 4 Iberian regions with contrasting vegetational traits: 1) decomposition rates of all plant species would be higher in regions where streams normally receive litter inputs of lower rather than higher quality; 2) a higher resource-use plasticity of detritivores in regions vegetated with plants of lower litter quality will cause a greater evenness in decomposition rates among plant species compared to regions where streams normally receive higher-quality plant litter inputs. Results showed a highly consistent interspecific ranking of decomposition rates across regions driven by litter quality, and a significant regional effect. Hypothesis 1 was supported: decomposition rates of the five litter types were generally higher in streams from regions vegetated with species producing leaf litter of low quality, possibly due to the profusion of caddisfly shredders in their communities. Hypothesis 2 was not supported: the relative differences in decomposition rates among leaf litter species remained essentially unaltered across regions. Our results suggest that, even in regions where detritivores can be comparatively efficient using resources of low quality, caution is needed particularly when afforestation programs introduce plant species of lower litter quality than the native species

    Deepint.net: A rapid deployment platform for smart territories

    Get PDF
    This paper presents an efficient cyberphysical platform for the smart management of smart territories. It is efficient because it facilitates the implementation of data acquisition and data management methods, as well as data representation and dashboard configuration. The platform allows for the use of any type of data source, ranging from the measurements of a multi-functional IoT sensing devices to relational and non-relational databases. It is also smart because it incorporates a complete artificial intelligence suit for data analysis; it includes techniques for data classification, clustering, forecasting, optimization, visualization, etc. It is also compatible with the edge computing concept, allowing for the distribution of intelligence and the use of intelligent sensors. The concept of smart cities is evolving and adapting to new applications; the trend to create intelligent neighbourhoods, districts or territories is becoming increasingly popular, as opposed to the previous approach of managing an entire megacity. In this paper, the platform is presented, and its architecture and functionalities are described. Moreover, its operation has been validated in a case study where the bike renting service of Paris—Vélib’ Métropole has been managed. This platform could enable smart territories to develop adapted knowledge management systems, adapt them to new requirements and to use multiple types of data, and execute efficient computational and artificial intelligence algorithms. The platform optimizes the decisions taken by human experts through explainable artificial intelligence models that obtain data from IoT sensors, databases, the Internet, etc. The global intelligence of the platform could potentially coordinate its decision-making processes with intelligent nodes installed in the edge, which would use the most advanced data processing techniques.This work has been partially supported by the European Regional Development Fund (ERDF) through the Interreg Spain-Portugal V-A Program (POCTEP) under grant 0677_DISRUPTIVE_2_E, the project My-TRAC: My TRAvel Companion (H2020-S2RJU-2017), the project LAPASSION, CITIES (CYTED 518RT0558) and the company DCSC. Pablo Chamoso’s research work has been funded through the Santander Iberoamerican Research Grants, call 2020/2021, under the direction of Paulo Novais

    Short-course combination treatment for experimental chronic Chagas disease

    Get PDF
    Chagas disease, caused by the protozoan parasite Trypanosoma cruzi, affects millions of people in the Americas and across the world, leading to considerable morbidity and mortality. Current treatment options, benznidazole (BNZ) and nifurtimox, offer limited efficacy and often lead to adverse side effects because of long treatment durations. Better treatment options are therefore urgently required. Here, we describe a pyrrolopyrimidine series, identified through phenotypic screening, that offers an opportunity to improve on current treatments. In vitro cell-based washout assays demonstrate that compounds in the series are incapable of killing all parasites; however, combining these pyrrolopyrimidines with a subefficacious dose of BNZ can clear all parasites in vitro after 5 days. These findings were replicated in a clinically predictive in vivo model of chronic Chagas disease, where 5 days of treatment with the combination was sufficient to prevent parasite relapse. Comprehensive mechanism of action studies, supported by ligand-structure modeling, show that compounds from this pyrrolopyrimidine series inhibit the Qi active site of T. cruzi cytochrome b, part of the cytochrome bc1 complex of the electron transport chain. Knowledge of the molecular target enabled a cascade of assays to be assembled to evaluate selectivity over the human cytochrome b homolog. As a result, a highly selective and efficacious lead compound was identified. The combination of our lead compound with BNZ rapidly clears T. cruzi parasites, both in vitro and in vivo, and shows great potential to overcome key issues associated with currently available treatments.</p

    Short-course combination treatment for experimental chronic Chagas disease

    Get PDF
    Chagas disease, caused by the protozoan parasite Trypanosoma cruzi, affects millions of people in the Americas and across the world, leading to considerable morbidity and mortality. Current treatment options, benznidazole (BNZ) and nifurtimox, offer limited efficacy and often lead to adverse side effects because of long treatment durations. Better treatment options are therefore urgently required. Here, we describe a pyrrolopyrimidine series, identified through phenotypic screening, that offers an opportunity to improve on current treatments. In vitro cell-based washout assays demonstrate that compounds in the series are incapable of killing all parasites; however, combining these pyrrolopyrimidines with a subefficacious dose of BNZ can clear all parasites in vitro after 5 days. These findings were replicated in a clinically predictive in vivo model of chronic Chagas disease, where 5 days of treatment with the combination was sufficient to prevent parasite relapse. Comprehensive mechanism of action studies, supported by ligand-structure modeling, show that compounds from this pyrrolopyrimidine series inhibit the Qi active site of T. cruzi cytochrome b, part of the cytochrome bc1 complex of the electron transport chain. Knowledge of the molecular target enabled a cascade of assays to be assembled to evaluate selectivity over the human cytochrome b homolog. As a result, a highly selective and efficacious lead compound was identified. The combination of our lead compound with BNZ rapidly clears T. cruzi parasites, both in vitro and in vivo, and shows great potential to overcome key issues associated with currently available treatments.</p

    Energy Estimation of Cosmic Rays with the Engineering Radio Array of the Pierre Auger Observatory

    Full text link
    The Auger Engineering Radio Array (AERA) is part of the Pierre Auger Observatory and is used to detect the radio emission of cosmic-ray air showers. These observations are compared to the data of the surface detector stations of the Observatory, which provide well-calibrated information on the cosmic-ray energies and arrival directions. The response of the radio stations in the 30 to 80 MHz regime has been thoroughly calibrated to enable the reconstruction of the incoming electric field. For the latter, the energy deposit per area is determined from the radio pulses at each observer position and is interpolated using a two-dimensional function that takes into account signal asymmetries due to interference between the geomagnetic and charge-excess emission components. The spatial integral over the signal distribution gives a direct measurement of the energy transferred from the primary cosmic ray into radio emission in the AERA frequency range. We measure 15.8 MeV of radiation energy for a 1 EeV air shower arriving perpendicularly to the geomagnetic field. This radiation energy -- corrected for geometrical effects -- is used as a cosmic-ray energy estimator. Performing an absolute energy calibration against the surface-detector information, we observe that this radio-energy estimator scales quadratically with the cosmic-ray energy as expected for coherent emission. We find an energy resolution of the radio reconstruction of 22% for the data set and 17% for a high-quality subset containing only events with at least five radio stations with signal.Comment: Replaced with published version. Added journal reference and DO

    Measurement of the Radiation Energy in the Radio Signal of Extensive Air Showers as a Universal Estimator of Cosmic-Ray Energy

    Full text link
    We measure the energy emitted by extensive air showers in the form of radio emission in the frequency range from 30 to 80 MHz. Exploiting the accurate energy scale of the Pierre Auger Observatory, we obtain a radiation energy of 15.8 \pm 0.7 (stat) \pm 6.7 (sys) MeV for cosmic rays with an energy of 1 EeV arriving perpendicularly to a geomagnetic field of 0.24 G, scaling quadratically with the cosmic-ray energy. A comparison with predictions from state-of-the-art first-principle calculations shows agreement with our measurement. The radiation energy provides direct access to the calorimetric energy in the electromagnetic cascade of extensive air showers. Comparison with our result thus allows the direct calibration of any cosmic-ray radio detector against the well-established energy scale of the Pierre Auger Observatory.Comment: Replaced with published version. Added journal reference and DOI. Supplemental material in the ancillary file
    • …
    corecore