13 research outputs found

    Electron attachment to the interhalogen compounds ClF, ICl, and IBr

    Get PDF
    Thermal electron attachment rate coefficients for three interhalogen compounds (C1F, ICl, IBr) have been measured from 300 to 900 K at pressures of 1–2 Torr using a flowing afterglow–Langmuir probe apparatus. ClF attaches somewhat inefficiently (k = 7.5×10−9 cm3 s−1) at 300 K, with the rate coefficient rising to 1.7×10−8 cm3 s−1 at 700 K. At higher temperatures the apparent rate coefficient falls steeply; however, this is interpreted as an artifact due to decomposition on the walls of the inlet line. ICl attaches with even lower efficiency (k = 9.5×10−10 cm3 s−1 at 300 K) and a less steep increase with temperature. Attachment to IBr is too slow to confidently measure with the present experiment, with an upper limit on the rate coefficient of 10−10 cm3 s−1 from 300 to 600 K. Both ClF and ICl attach dissociatively to yield Cl−, likely exclusively, though F− or I− may be produced with limits of \u3c2% and \u3c5%, respectively. The ClF attachment was further explored through ab initio calculation of the ClF and ClF− potential energy curves and R-matrix calculations of the resonance parameters which were used then for calculations of the dissociative attachment cross sections and rate coefficients. While the magnitude of the attachment rate coefficient for ClF is similar to those for both Cl2 and F2, the calculated cross sections show qualitatively different threshold behavior due to the s-wave contribution allowed by the lack of inversion symmetry. The v = 1 and 2 vibrational modes of ClF attach about three to four times faster than v = 0 and 3 at energies lower than ∼0.2 eV. The calculated rate coefficients are in good agreement with the experiment at 300 K and increase moderately less steeply with temperature

    Effects of anticancer drug docetaxel on the structure and function of the rabbit olfactory mucosa

    No full text
    Docetaxel (DCT) is an anticancer drug which acts by disrupting microtubule dynamics in the highly mitotic cancer cells. Thus, this drug has a potential to affect function and organization of tissues exhibiting high cellular turnover. We investigated, in the rabbit, the effects of a single human equivalent dose (6.26mg/kg, i.v.) of DCT on the olfactory mucosa (OM) through light and electron microscopy, morphometry, Ki-67 immunostaining, TUNEL assay and the buried food test for olfactory sensitivity. On post-exposure days (PED) 5 and 10, there was disarrangement of the normal cell layering in the olfactory epithelium (OE), apoptotic death of cells of the OE, Bowman's glands and axon bundles, and the presence (including on PED 3) of blood vessels in the bundle cores. A decrease in bundle diameters, olfactory cell densities and cilia numbers, which was most significant on PED 10 (49.3%, 63.4% and 50%, respectively), was also evident. Surprisingly by PED 15, the OM regained normal morphology. Furthermore, olfactory sensitivity decreased progressively until PED 10 when olfaction was markedly impaired, and with recovery from the impairment by PED 15. These observations show that DCT transiently alters the structure and function of the OM suggesting a high regenerative potential for this tissue

    Discovery-based science education: functional genomic dissection in Drosophila by undergraduate researchers.

    Get PDF
    How can you combine professional-quality research with discovery-based undergraduate education? The UCLA Undergraduate Consortium for Functional Genomics provides the answe

    Sonstige unmittelbare Eigenschaften der Elektronenhülle

    No full text

    Representative Pictures from the Laboratory Section of the Course

    No full text
    <p>Representative Pictures from the Laboratory Section of the Course</p

    Discovery-Based Science Education: Functional Genomic Dissection in Drosophila by Undergraduate Researchers

    No full text
    Discovery-Based Science Education: Functional Genomic Dissection in Drosophila by Undergraduate Researcher
    corecore