284 research outputs found

    Convergent evolution of pregnancy-specific glycoproteins in human and horse

    Get PDF
    Pregnancy-specific glycoproteins (PSGs) are members of the carcinoembryonic antigen cell adhesion molecule (CEACAM) family that are secreted by trophoblast cells. PSGs may modulate immune, angiogenic and platelet responses during pregnancy. Until now, PSGs are only found in species that have a highly invasive (hemochorial) placentation including humans, mice and rats. Surprisingly, analyzing the CEACAM gene family of the horse, which has a non-invasive epitheliochorial placenta, with the exception of the transient endometrial cups, we identified equine CEACAM family members that seem to be related to PSGs of rodents and primates. We identified seven genes that encode secreted PSG-like CEACAMs. Phylogenetic analyses indicate that they evolved independently from an equine CEACAM1-like ancestor rather than from a common PSG-like ancestor with rodents and primates. Significantly, expression of PSG-like genes (CEACAM44, CEACAM48, CEACAM49 and CEACAM55) was found in non-invasive as well as invasive trophoblast cells such as purified chorionic girdle cells and endometrial cup cells. Chorionic girdle cells are highly invasive trophoblast cells that invade the endometrium of the mare where they form endometrial cups and are in close contact with maternal immune cells. Therefore, the microenvironment of invasive equine trophoblast cells has striking similarities to the microenvironment of trophoblast cells in hemochorial placentas, suggesting that equine PSG-like CEACAMs and rodent and primate PSGs have undergone convergent evolution. This is supported by our finding that equine PSG-like CEACAM49 exhibits similar activity to certain rodent and human PSGs in a functional assay of platelet–fibrinogen binding. Our results have implications for understanding the evolution of PSGs and their functions in maternal–fetal interactions

    A model comparison reveals dynamic social information drives the movements of humbug damselfish (Dascyllus aruanus)

    Get PDF
    Animals make use a range of social information to inform their movement decisions. One common movement rule, found across many different species, is that the probability that an individual moves to an area increases with the number of conspecifics there. However, in many cases, it remains unclear what social cues produce this and other similar movement rules. Here, we investigate what cues are used by damselfish (Dascyllus aruanus) when repeatedly crossing back and forth between two coral patches in an experimental arena. We find that an individual's decision to move is best predicted by the recent movements of conspecifics either to or from that individual's current habitat. Rather than actively seeking attachment to a larger group, individuals are instead prioritizing highly local and dynamic information with very limited spatial and temporal ranges. By reanalyzing data in which the same species crossed for the first time to a new coral patch, we show that the individuals use static cues in this case. This suggests that these fish alter their information usage according to the structure and familiarity of their environment by using stable information when moving to a novel area and localized dynamic information when moving between familiar areas

    A global database of lake surface temperatures collected by in situ and satellite methods from 1985–2009

    Get PDF
    Global environmental change has influenced lake surface temperatures, a key driver of ecosystem structure and function. Recent studies have suggested significant warming of water temperatures in individual lakes across many different regions around the world. However, the spatial and temporal coherence associated with the magnitude of these trends remains unclear. Thus, a global data set of water temperature is required to understand and synthesize global, long-term trends in surface water temperatures of inland bodies of water. We assembled a database of summer lake surface temperatures for 291 lakes collected in situ and/or by satellites for the period 1985–2009. In addition, corresponding climatic drivers (air temperatures, solar radiation, and cloud cover) and geomorphometric characteristics (latitude, longitude, elevation, lake surface area, maximum depth, mean depth, and volume) that influence lake surface temperatures were compiled for each lake. This unique dataset offers an invaluable baseline perspective on global-scale lake thermal conditions as environmental change continues

    Rapid and highly variable warming of lake surface waters around the globe

    Get PDF
    In this first worldwide synthesis of in situ and satellite‐derived lake data, we find that lake summer surface water temperatures rose rapidly (global mean = 0.34°C decade−1) between 1985 and 2009. Our analyses show that surface water warming rates are dependent on combinations of climate and local characteristics, rather than just lake location, leading to the counterintuitive result that regional consistency in lake warming is the exception, rather than the rule. The most rapidly warming lakes are widely geographically distributed, and their warming is associated with interactions among different climatic factors—from seasonally ice‐covered lakes in areas where temperature and solar radiation are increasing while cloud cover is diminishing (0.72°C decade−1) to ice‐free lakes experiencing increases in air temperature and solar radiation (0.53°C decade−1). The pervasive and rapid warming observed here signals the urgent need to incorporate climate impacts into vulnerability assessments and adaptation efforts for lakes

    A 'Multiple Lenses' Approach to Policy Change: the Case of Tobacco Policy in the UK

    Get PDF
    This article examines a period of rapid policy change following decades of stability in UK tobacco. It seeks to account for such a long period of policy stability, to analyse and qualify the extent of change, and to explain change using a 'multiple lenses' approach. It compares the explanatory value of policy network models such as punctuated equilibrium and the advocacy coalition framework, with models stressing change from 'above and below' such as multi-level governance and policy transfer. A key finding is that the value of these models varies according to the narrative of policy change that we select. The article challenges researchers to be careful about assuming the nature of policy change before embarking on explanation. While the findings of the case study may vary with other policy areas in British politics, the call for clarity and lessons from multiple approaches are widely applicable

    Bosonization and phase Diagram of the one-dimensional t-J model

    Full text link
    We present an analytic study of the phase diagram of the one-dimensional t-J model and a couple of its cousins. To deal with the interactions induced by the no double occupancy constraints, we introduce a deformation of the Hubbard operators. When the deformation parameter Δ\Delta is small, the induced interactions are softened, accessible by perturbation theory. We combine bososnization with renormalization group techniques to map out the phase diagram of the system. We argue that when Δ1\Delta\to 1, there is no essential change in the phase diagram. Comparison with the existing results in the literature obtained by other methods justifies our deformation approach.Comment: 24 pages, 1 Figur

    Structural evidence for the partially oxidized dipyrromethene and dipyrromethanone forms of the cofactor of porphobilinogen deaminase: structures of the Bacillus megaterium

    Get PDF
    The enzyme porphobilinogen deaminase (PBGD; hydroxymethylbilane synthase; EC 2.5.1.61) catalyses an early step of the tetrapyrrole-biosynthesis pathway in which four molecules of the monopyrrole porphobilinogen are condensed to form a linear tetrapyrrole. The enzyme possesses a dipyrromethane cofactor, which is covalently linked by a thioether bridge to an invariant cysteine residue (Cys241 in the Bacillus megaterium enzyme). The cofactor is extended during the reaction by the sequential addition of the four substrate molecules, which are released as a linear tetrapyrrole product. Expression in Escherichia coli of a His-tagged form of B. megaterium PBGD has permitted the X-ray analysis of the enzyme from this species at high resolution, showing that the cofactor becomes progressively oxidized to the dipyrromethene and dipyrromethanone forms. In previously solved PBGD structures, the oxidized cofactor is in the dipyromethenone form, in which both pyrrole rings are approximately coplanar. In contrast, the oxidized cofactor in the B. megaterium enzyme appears to be in the dipyrromethanone form, in which the C atom at the bridging α-position of the outer pyrrole ring is very clearly in a tetrahedral configuration. It is suggested that the pink colour of the freshly purified protein is owing to the presence of the dipyrromethene form of the cofactor which, in the structure reported here, adopts the same conformation as the fully reduced dipyrromethane form

    Incommensurate ground state of double-layer quantum Hall systems

    Full text link
    Double-layer quantum Hall systems possess interlayer phase coherence at sufficiently small layer separations, even without interlayer tunneling. When interlayer tunneling is present, application of a sufficiently strong in-plane magnetic field B>BcB_\parallel > B_c drives a commensurate-incommensurate (CI) transition to an incommensurate soliton-lattice (SL) state. We calculate the Hartree-Fock ground-state energy of the SL state for all values of BB_\parallel within a gradient approximation, and use it to obtain the anisotropic SL stiffness, the Kosterlitz-Thouless melting temperature for the SL, and the SL magnetization. The in-plane differential magnetic susceptibility diverges as (BBc)1(B_\parallel - B_c)^{-1} when the CI transition is approached from the SL state.Comment: 12 pages, 7 figures, to be published in Physical Review

    Separation of Spin and Charge Quantum Numbers in Strongly Correlated Systems

    Full text link
    In this paper we reexamine the problem of the separation of spin and charge degrees of freedom in two dimensional strongly correlated systems. We establish a set of sufficient conditions for the occurence of spin and charge separation. Specifically, we discuss this issue in the context of the Heisenberg model for spin-1/2 on a square lattice with nearest (J1J_1) and next-nearest (J2J_2) neighbor antiferromagnetic couplings. Our formulation makes explicit the existence of a local SU(2) gauge symmetry once the spin-1/2 operators are replaced by bound states of spinons. The mean-field theory for the spinons is solved numerically as a function of the ratio J2/J1J_2/J_1 for the so-called s-RVB Ansatz. A second order phase transition exists into a novel flux state for J2/J1>(J2/J1)crJ_2/J_1>(J_2/J_1)_{{\rm cr}}. We identify the range 0<J2/J1<(J2/J1)cr0<J_2/J_1<(J_2/J_1)_{\rm cr} as the s-RVB phase. It is characterized by the existence of a finite gap to the elementary excitations (spinons) and the breakdown of all the continuous gauge symmetries. An effective continuum theory for the spinons and the gauge degrees of freedom is constructed just below the onset of the flux phase. We argue that this effective theory is consistent with the deconfinement of the spinons carrying the fundamental charge of the gauge group. We contrast this result with the study of the one dimensional quantum antiferromagnet within the same approach. We show that in the one dimensional model, the spinons of the gauge picture are always confined and thus cannot be identified with the gapless spin-1/2 excitations of the quantum antiferromagnet Heisenberg model.Comment: 56 pages, RevteX 3.
    corecore