13 research outputs found

    Diffuse Interstitial Infiltrative Lung Metastasis of Malignant Melanoma: a Case Report

    Get PDF
    A diffuse interstitial infiltrative pattern of lung metastasis in a patient with malignant melanoma is rare and can be confused with benign conditions such as pulmonary edema or drug-induced pneumonitis. We experienced a case of diffuse interstitial infiltrative lung metastasis in malignant melanoma in a 37-year-old man. This case was confirmed by a transbronchial lung biopsy. We herein describe the findings on CT and positron emission tomography scan

    Influence of B1 Inhomogeneity on Pharmacokinetic Modeling of Dynamic Contrast-Enhanced MRI: A Simulation Study

    Get PDF
    Objective: To simulate the B1-inhomogeneity-induced variation of pharmacokinetic parameters on DCE-MRI. Materials and Methods: B1-inhomogeneity-induced flip angle (FA) variation was estimated in a phantom study. Monte Carlo simulation was performed to assess the FA-deviation-induced measurement error of the pre-contrast R1, contrast-enhancement ratio, Gd concentration, and two-compartment pharmacokinetic parameters (Ktrans, ve and vp). Results: B1-inhomogeneity resulted in -23% ~ 5% fluctuations (95% confidence interval (CI) of % error) of FA. The 95% CIs of FA-dependent % errors in the gray matter and blood were as follows: -16.7% - 61.8% and -16.7% - 61.8% for the pre-contrast R1, -1.0% - 0.3% and -5.2% - 1.3% for the contrast-enhancement ratio, and -14.2% - 58.1% and -14.1% - 57.8% for the Gd concentration, respectively. These resulted in -43.1% - 48.4% error for Ktrans, -32.3% - 48.6% error for the ve, and -43.2% - 48.6% error for vp. The pre-contrast R1 was more vulnerable to FA error than the contrast-enhancement ratio, and was therefore a significant cause of the Gd-concentration error. For example, a -10% FA error led to a 23.6% deviation in the pre-contrast R1, -0.4% in the contrast-enhancement ratio, and 23.6% in the Gd concentration. In a simulated condition with a 3% FA error in a target lesion and a -10% FA error in a feeding vessel, the % errors of the pharmacokinetic parameters were -23.7% for Ktrans, -23.7% for ve, and -23.7% for vp. Conclusion: Even a small degree of B1-inhomogeneity can cause a significant error in the measurement of pharmacokinetic parameters on DCE-MRI, while the vulnerability of the pre-contrast R1 calculations to FA deviations is a significant cause of the miscalculation.ope

    Tiny Medicine: Nanomaterial-Based Biosensors

    Get PDF
    Tiny medicine refers to the development of small easy to use devices that can help in the early diagnosis and treatment of disease. Early diagnosis is the key to successfully treating many diseases. Nanomaterial-based biosensors utilize the unique properties of biological and physical nanomaterials to recognize a target molecule and effect transduction of an electronic signal. In general, the advantages of nanomaterial-based biosensors are fast response, small size, high sensitivity, and portability compared to existing large electrodes and sensors. Systems integration is the core technology that enables tiny medicine. Integration of nanomaterials, microfluidics, automatic samplers, and transduction devices on a single chip provides many advantages for point of care devices such as biosensors. Biosensors are also being used as new analytical tools to study medicine. Thus this paper reviews how nanomaterials can be used to build biosensors and how these biosensors can help now and in the future to detect disease and monitor therapies

    METHOD AND APPARATUS TO PROVIDE BLOOD VESSEL ANALYSIS INFORMATION USING MEDICAL IMAGE

    No full text
    A blood vessel analysis information providing method includes emitting an ultrasonic signal on a body portion where a blood vessel exists and sensinga reflected ultrasonic signal, generating a color mode image by using the reflected ultrasonic signals, and determining diameters of the blood vessels based on pixel values of the generated color mode image.</p
    corecore