439 research outputs found

    Digestive Duet: Midgut Digestive Proteinases of Manduca sexta Ingesting Nicotiana attenuata with Manipulated Trypsin Proteinase Inhibitor Expression

    Get PDF
    The defensive effect of endogenous trypsin proteinase inhibitors (NaTPIs) on the herbivore Manduca sexta was demonstrated by genetically altering NaTPI production in M. sexta's host plant, Nicotiana attenuata. To understand how this defense works, we studied the effects of NaTPI on M. sexta gut proteinase activity levels in different larval instars of caterpillars feeding freely on untransformed and transformed plants. Methodology/ Principal Findings Second and third instars larvae that fed on NaTPI-producing (WT) genotypes were lighter and had less gut proteinase activity compared to those that fed on genotypes with either little or no NaTPI activity. Unexpectedly, NaTPI activity in vitro assays not only inhibited the trypsin sensitive fraction of gut proteinase activity but also halved the NaTPI-insensitive fraction in third-instar larvae. Unable to degrade NaTPI, larvae apparently lacked the means to adapt to NaTPI in their diet. However, caterpillars recovered at least part of their gut proteinase activity when they were transferred from NaTPI-producing host plants to NaTPI-free host plants. In addition extracts of basal leaves inhibited more gut proteinase activity than did extracts of middle stem leaves with the same protein content. Conclusions/ Significance Although larvae can minimize the effects of high NaTPI levels by feeding on leaves with high protein and low NaTPI activity, the host plant's endogenous NaTPIs remain an effective defense against M. sexta, inhibiting gut proteinase and affecting larval performance

    Biosynthesis of Sesquiterpene Lactones in Pyrethrum (Tanacetum cinerariifolium)

    Get PDF
    The daisy-like flowers of pyrethrum (Tanacetum cinerariifolium) are used to extract pyrethrins, a botanical insecticide with a long history of safe and effective use. Pyrethrum flowers also contain other potential defense compounds, particularly sesquiterpene lactones (STLs), which represent problematic allergenic residues in the extracts that are removed by the pyrethrum industry. The STLs are stored in glandular trichomes present on the pyrethrum achenes, and have been shown to be active against herbivores, micro-organisms and in the below-ground competition with other plants. Despite these reported bioactivities and industrial significance, the biosynthetic origin of pyrethrum sesquiterpene lactones remains unknown. In the present study, we show that germacratrien-12-oic acid is most likely the central precursor for all sesquiterpene lactones present in pyrethrum. The formation of the lactone ring depends on the regio- (C6 or C8) and stereo-selective (a or ß) hydroxylation of germacratrien-12-oic acid. Candidate genes implicated in three committed steps leading from farnesyl diphosphate to STL and other oxygenated derivatives of germacratrien-12-oic acid were retrieved from a pyrethrum trichome EST library, cloned, and characterized in yeast and in planta. The diversity and distribution of sesquiterpene lactones in different tissues and the correlation with the expression of these genes are shown and discussed

    The ER-embedded UBE2J1/RNF26 ubiquitylation complex exerts spatiotemporal control over the endolysosomal pathway

    Get PDF
    The endolysosomal system fulfills a wide variety of cellular functions, many of which are modulated through interactions with other organelles. In particular, the ER exerts spatiotemporal constraints on the organization and motility of endosomes and lysosomes. We have recently described the ER transmembrane E3 ubiquitin ligase RNF26 as a regulator of endolysosomal perinuclear positioning and transport dynamics. Here, we report that the ubiquitin conjugating enzyme UBE2J1, also anchored in the ER membrane, partners with RNF26 in this context, and that the cellular activity of the resulting E2/E3 pair is localized in a perinuclear ER subdomain and supported by transmembrane interactions. Through modification of SQSTM1/p62 on lysine 435, the ER-embedded UBE2J1/RNF26 ubiquitylation complex recruits endosomal adaptors to immobilize their cognate vesicles in the perinuclear region of the cell. The resulting spatiotemporal compartmentalization promotes the trafficking of activated EGFR to lysosomes and facilitates the termination of EGF-induced AKT signaling.Cancer Signaling networks and Molecular Therapeutic

    A Broad Set of Different Llama Antibodies Specific for a 16 kDa Heat Shock Protein of Mycobacterium tuberculosis

    Get PDF
    Background Recombinant antibodies are powerful tools in engineering of novel diagnostics. Due to the small size and stable nature of llama antibody domains selected antibodies can serve as a detection reagent in multiplexed and sensitive assays for M. tuberculosis. Methodology/Principal Findings Antibodies for Mycobacterium tuberculosis (M. tb) recognition were raised in Alpaca, and, by phage display, recombinant variable domains of heavy-chain antibodies (VHH) binding to M. tuberculosis antigens were isolated. Two phage display selection strategies were followed: one direct selection using semi-purified protein antigen, and a depletion strategy with lysates, aiming to avoid cross-reaction to other mycobacteria. Both panning methods selected a set of binders with widely differing complementarity determining regions. Selected recombinant VHHs were produced in E. coli and shown to bind immobilized lysate in direct Enzymelinked Immunosorbent Assay (ELISA) tests and soluble antigen by surface plasmon resonance (SPR) analysis. All tested VHHs were specific for tuberculosis-causing mycobacteria (M. tuberculosis, M. bovis) and exclusively recognized an immunodominant 16 kDa heat shock protein (hsp). The highest affinity VHH had a dissociation constant (KD) of 4×10-10 M. Conclusions/Significance A broad set of different llama antibodies specific for 16 kDa heat shock protein of M. tuberculosis is available. This protein is highly stable and abundant in M. tuberculosis. The VHH that detect this protein are applied in a robust SPR sensor for identification of tuberculosis-causing mycobacteria

    Tomato protoplast DNA transformation: physical linkage and recombination of exogenous DNA sequences

    Get PDF
    Tomato protoplasts have been transformed with plasmid DNA's, containing a chimeric kanamycin resistance gene and putative tomato origins of replication. A calcium phosphate-DNA mediated transformation procedure was employed in combination with either polyethylene glycol or polyvinyl alcohol. There were no indications that the tomato DNA inserts conferred autonomous replication on the plasmids. Instead, Southern blot hybridization analysis of seven kanamycin resistant calli revealed the presence of at least one kanamycin resistance locus per transformant integrated in the tomato nuclear DNA. Generally one to three truncated plasmid copies were found integrated into the tomato nuclear DNA, often physically linked to each other. For one transformant we have been able to use the bacterial ampicillin resistance marker of the vector plasmid pUC9 to 'rescue' a recombinant plasmid from the tomato genome. Analysis of the foreign sequences included in the rescued plasmid showed that integration had occurred in a non-repetitive DNA region. Calf-thymus DNA, used as a carrier in transformation procedure, was found to be covalently linked to plasmid DNA sequences in the genomic DNA of one transformant. A model is presented describing the fate of exogenously added DNA during the transformation of a plant cell. The results are discussed in reference to the possibility of isolating DNA sequences responsible for autonomous replication in tomato.

    Evaluation of exclusive enteral nutrition and corticosteroid induction treatment in new-onset moderate-to-severe luminal paediatric Crohn's disease

    Get PDF
    To induce remission in luminal paediatric Crohn's disease (CD), the ESPGHAN/ECCO guideline recommends treatment with exclusive enteral nutrition (EEN) or oral corticosteroids. In newly diagnosed moderate-to-severe paediatric CD patients, we determined the proportion of patients in which EEN or corticosteroids induced remission and maintained remission on azathioprine monotherapy. We included patients from the "TISKids" study assigned to the conventional treatment arm. Patients were aged 3-17 years and had new-onset, untreated luminal CD with weighted paediatric CD activity index (wPCDAI)> 40. Induction treatment consisted of EEN or oral corticosteroids; all received azathioprine maintenance treatment from start of treatment. The primary outcome of this study was endoscopic remission defined as a SES-CD score Conclusion: In children with moderate-to-severe newly diagnosed CD, induction treatment with EEN or CS regularly is insufficient to achieve endoscopic remission without treatment escalation at week 10.Peer reviewe

    Tomato: a crop species amenable to improvement by cellular and molecular methods

    Get PDF
    Tomato is a crop plant with a relatively small DNA content per haploid genome and a well developed genetics. Plant regeneration from explants and protoplasts is feasable which led to the development of efficient transformation procedures. In view of the current data, the isolation of useful mutants at the cellular level probably will be of limited value in the genetic improvement of tomato. Protoplast fusion may lead to novel combinations of organelle and nuclear DNA (cybrids), whereas this technique also provides a means of introducing genetic information from alien species into tomato. Important developments have come from molecular approaches. Following the construction of an RFLP map, these RFLP markers can be used in tomato to tag quantitative traits bred in from related species. Both RFLP's and transposons are in the process of being used to clone desired genes for which no gene products are known. Cloned genes can be introduced and potentially improve specific properties of tomato especially those controlled by single genes. Recent results suggest that, in principle, phenotypic mutants can be created for cloned and characterized genes and will prove their value in further improving the cultivated tomato.

    Cortical Plasticity Induced by Short-Term Multimodal Musical Rhythm Training

    Get PDF
    Performing music is a multimodal experience involving the visual, auditory, and somatosensory modalities as well as the motor system. Therefore, musical training is an excellent model to study multimodal brain plasticity. Indeed, we have previously shown that short-term piano practice increase the magnetoencephalographic (MEG) response to melodic material in novice players. Here we investigate the impact of piano training using a rhythmic-focused exercise on responses to rhythmic musical material. Musical training with non musicians was conducted over a period of two weeks. One group (sensorimotor-auditory, SA) learned to play a piano sequence with a distinct musical rhythm, another group (auditory, A) listened to, and evaluated the rhythmic accuracy of the performances of the SA-group. Training-induced cortical plasticity was evaluated using MEG, comparing the mismatch negativity (MMN) in response to occasional rhythmic deviants in a repeating rhythm pattern before and after training. The SA-group showed a significantly greater enlargement of MMN and P2 to deviants after training compared to the A- group. The training-induced increase of the rhythm MMN was bilaterally expressed in contrast to our previous finding where the MMN for deviants in the pitch domain showed a larger right than left increase. The results indicate that when auditory experience is strictly controlled during training, involvement of the sensorimotor system and perhaps increased attentional recources that are needed in producing rhythms lead to more robust plastic changes in the auditory cortex compared to when rhythms are simply attended to in the auditory domain in the absence of motor production

    Public involvement in the governance of population-level biomedical research: unresolved questions and future directions

    Get PDF
    Population-level biomedical research offers new opportunities to improve population health, but also raises new challenges to traditional systems of research governance and ethical oversight. Partly in response to these challenges, various models of public involvement in research are being introduced. Yet, the ways in which public involvement should meet governance challenges are not well understood. We conducted a qualitative study with 36 experts and stakeholders using the World Café method to identify key governance challenges and explore how public involvement can meet these challenges. This brief report discusses four cross-cutting themes from the study: the need to move beyond individual consent; issues in benefit and data sharing; the challenge of delineating and understanding publics; and the goal of clarifying justifications for public involvement. The report aims to provide a starting point for making sense of the relationship between public involvement and the governance of population-level biomedical research, showing connections, potential solutions and issues arising at their intersection. We suggest that, in population-level biomedical research, there is a pressing need for a shift away from conventional governance frameworks focused on the individual and towards a focus on collectives, as well as to foreground ethical issues around social justice and develop ways to address cultural diversity, value pluralism and competing stakeholder interests. There are many unresolved questions around how this shift could be realised, but these unresolved questions should form the basis for developing justificatory accounts and frameworks for suitable collective models of public involvement in population-level biomedical research governance. [Abstract copyright: © Author(s) (or their employer(s)) 2020. Re-use permitted under CC BY. Published by BMJ.

    Selective Loss of Cysteine Residues and Disulphide Bonds in a Potato Proteinase Inhibitor II Family

    Get PDF
    Disulphide bonds between cysteine residues in proteins play a key role in protein folding, stability, and function. Loss of a disulphide bond is often associated with functional differentiation of the protein. The evolution of disulphide bonds is still actively debated; analysis of naturally occurring variants can promote understanding of the protein evolutionary process. One of the disulphide bond-containing protein families is the potato proteinase inhibitor II (PI-II, or Pin2, for short) superfamily, which is found in most solanaceous plants and participates in plant development, stress response, and defence. Each PI-II domain contains eight cysteine residues (8C), and two similar PI-II domains form a functional protein that has eight disulphide bonds and two non-identical reaction centres. It is still unclear which patterns and processes affect cysteine residue loss in PI-II. Through cDNA sequencing and data mining, we found six natural variants missing cysteine residues involved in one or two disulphide bonds at the first reaction centre. We named these variants Pi7C and Pi6C for the proteins missing one or two pairs of cysteine residues, respectively. This PI-II-7C/6C family was found exclusively in potato. The missing cysteine residues were in bonding pairs but distant from one another at the nucleotide/protein sequence level. The non-synonymous/synonymous substitution (Ka/Ks) ratio analysis suggested a positive evolutionary gene selection for Pi6C and various Pi7C. The selective deletion of the first reaction centre cysteine residues that are structure-level-paired but sequence-level-distant in PI-II illustrates the flexibility of PI-II domains and suggests the functionality of their transient gene versions during evolution
    • …
    corecore