80 research outputs found
Energy-Filtering Transmission Electron Microscopy of Biological Specimens
By energy-filtering transmission electron microscopy (EFTEM) electrons can be separated by their energy losses. An electron-energy filter, added to the microscope column allows the measurement of the energy distribution of transmitted electrons that have lost energy (\u3c 2,000 eV, with an energy resolution of ~ 1 eV). These filtered electrons, recorded either as a spectrum or as an image, are composed of two parts superimposed on top of each other: (a) the unspecific energy-loss population (= the continuum) and (b) the specific element-related energy-loss population (= the edges). At the edges, electron data in spectra and images are mathematically processed, to obtain the desired element-related net-intensity values or images. These data are related to the total transmitted electron intensity, from the zero-and low-loss spectral region giving the relative spectral-or image intensity ratios (SR*x, IR*x), which can be related to the element concentration. The acquisition of the zero-loss and low-loss data is hampered by the restricted dynamic range of the TV camera. By improvements through the introduction of calibrated attenuation filters in the optical path to the TV-camera, more reliable values for SR*x and IR*x can be acquired. By addition of Bio-standards adjacent to the tissue, a known and unknown concentration of the element present in the same ultrathin section and the bias in the concentration estimation, can be obtained. Some practical examples are given for the estimation of the iron concentration in siderosomes, boron in melanosomes and calcium in calcium oxalate monohydrate crystals
Energy-Filtering Transmission Electron Microscopy as a Tool for Structural and Compositional Analysis of Isolated Ferritin Particles
Structural and compositional analysis of isolated horse-spleen ferritin particles was performed by energy filtering transmission electron microscopy (EFTEM). Ferritin particles were collected in ultrathin (2 nm thick) chromium films and analyzed without any additional stain by electron energy-loss spectroscopy (EELS) for iron and carbon and by electron-spectroscopic imaging (ESI) for carbon. The ultrastructure of the proteinaceous shell of the ferritin particle, as obtained by the carbon net-intensity electron spectroscopical and carbon concentration-distribution images, was qualitatively compared to the structure as acquired by a negative-staining procedure.
Quantitative analysis of the number of carbon atoms in the ferritin-shell proteins was carried out through an ESI-acquisition protocol and processing procedure with calibrated attenuation filters in the optical path to the TV camera. This procedure included images acquired with calibrated attenuation filters for the compensation of shading and the non-linear performance of the TV camera used in the analytical part of the procedure. A new ESI-Spectra program is proposed that allows element-related spectra to be generated at any place and with any frame size in a contrast-sensitive or other type of image present on the computer monitor screen
Impact of Controlling the Site Distribution of Al Atoms on Catalytic Properties in Ferrierite-Type Zeolites
Zeolites with the ferrierite (FER) topology are synthesized using a combination of tetramethylammonium
(TMA) cations with differently sized cyclic amines (pyrrolidine (Pyr), hexamethyleneimine (HMI), and 1,4-
diazabicyclo[2.2.2]octane (DAB)). Using these organic structure-directing agents (SDAs), low Si/Al ratios
and concentrated synthesis mixtures favor the crystallization of FER materials. Increasing the size of the
cyclic amine or decreasing the aluminum content leads to the crystallization of other phases or the creation
of excessive amounts of connectivity defects. TMA cations play a decisive role in the synthesis of the FER
materials, and their presence allows the use of HMI to synthesize FER. Proton MAS NMR is used to quantify
the accessibility of pyridine to acid sites in these FER samples, where it is found that the FER + HMI + TMA
sample contains only 27% acid sites in the 8-MR channels, whereas FER + Pyr and FER + Pyr + TMA
contain 89% and 84%, respectively. The constraint index (CI) test and the carbonylation of dimethyl ether
(DME) with carbon monoxide are used as probe reactions to evaluate how changes in the aluminum distribution
in these FER samples affect their catalytic behavior. Results show that the use of Pyr as an SDA results in
the selective population of acid sites in the 8-MR channels, whereas the use of HMI generates FER zeolites
with an increased concentration of acid sites in the 10-MR channels
PITFALLS IN THE USE OF RAPID FREEZING FOR STOPPING BRAIN AND SPINAL CORD METABOLISM IN RAT AND MOUSE
Documenting the Recovery of Vascular Services in European Centres Following the Initial COVID-19 Pandemic Peak: Results from a Multicentre Collaborative Study
Objective: To document the recovery of vascular services in Europe following the first COVID-19 pandemic peak. Methods: An online structured vascular service survey with repeated data entry between 23 March and 9 August 2020 was carried out. Unit level data were collected using repeated questionnaires addressing modifications to vascular services during the first peak (March – May 2020, “period 1”), and then again between May and June (“period 2”) and June and July 2020 (“period 3”). The duration of each period was similar. From 2 June, as reductions in cases began to be reported, centres were first asked if they were in a region still affected by rising cases, or if they had passed the peak of the first wave. These centres were asked additional questions about adaptations made to their standard pathways to permit elective surgery to resume. Results: The impact of the pandemic continued to be felt well after countries’ first peak was thought to have passed in 2020. Aneurysm screening had not returned to normal in 21.7% of centres. Carotid surgery was still offered on a case by case basis in 33.8% of centres, and only 52.9% of centres had returned to their normal aneurysm threshold for surgery. Half of centres (49.4%) believed their management of lower limb ischaemia continued to be negatively affected by the pandemic. Reduced operating theatre capacity continued in 45.5% of centres. Twenty per cent of responding centres documented a backlog of at least 20 aortic repairs. At least one negative swab and 14 days of isolation were the most common strategies used for permitting safe elective surgery to recommence. Conclusion: Centres reported a broad return of services approaching pre-pandemic “normal” by July 2020. Many introduced protocols to manage peri-operative COVID-19 risk. Backlogs in cases were reported for all major vascular surgeries
Metal-organic frameworks as kinetic modulators for branched selectivity in hydroformylation.
Finding heterogeneous catalysts that are superior to homogeneous ones for selective catalytic transformations is a major challenge in catalysis. Here, we show how micropores in metal-organic frameworks (MOFs) push homogeneous catalytic reactions into kinetic regimes inaccessible under standard conditions. Such property allows branched selectivity up to 90% in the Co-catalysed hydroformylation of olefins without directing groups, not achievable with existing catalysts. This finding has a big potential in the production of aldehydes for the fine chemical industry. Monte Carlo and density functional theory simulations combined with kinetic models show that the micropores of MOFs with UMCM-1 and MOF-74 topologies increase the olefins density beyond neat conditions while partially preventing the adsorption of syngas leading to high branched selectivity. The easy experimental protocol and the chemical and structural flexibility of MOFs will attract the interest of the fine chemical industries towards the design of heterogeneous processes with exceptional selectivity
Cardiovasc Diabetol
Lower-extremity arterial disease (LEAD) is a major endemic disease with an alarming increased prevalence worldwide. It is a common and severe condition with excess risk of major cardiovascular events and death. It also leads to a high rate of lower-limb adverse events and non-traumatic amputation. The American Diabetes Association recommends a widespread medical history and clinical examination to screen for LEAD. The ankle brachial index (ABI) is the first non-invasive tool recommended to diagnose LEAD although its variable performance in patients with diabetes. The performance of ABI is particularly affected by the presence of peripheral neuropathy, medial arterial calcification, and incompressible arteries. There is no strong evidence today to support an alternative test for LEAD diagnosis in these conditions. The management of LEAD requires a strict control of cardiovascular risk factors including diabetes, hypertension, and dyslipidaemia. The benefit of intensive versus standard glucose control on the risk of LEAD has not been clearly established. Antihypertensive, lipid-lowering, and antiplatelet agents are obviously worthfull to reduce major cardiovascular adverse events, but few randomised controlled trials (RCTs) have evaluated the benefits of these treatments in terms of LEAD and its related adverse events. Smoking cessation, physical activity, supervised walking rehabilitation and healthy diet are also crucial in LEAD management. Several advances have been achieved in endovascular and surgical revascularization procedures, with obvious improvement in LEAD management. The revascularization strategy should take into account several factors including anatomical localizations of lesions, medical history of each patients and operator experience. Further studies, especially RCTs, are needed to evaluate the interest of different therapeutic strategies on the occurrence and progression of LEAD and its related adverse events in patients with diabetes
Reduction of Sample Volume in the SMA 12/60
Peer Reviewe
- …