1,374 research outputs found

    Coordinated optimization of visual cortical maps (II) Numerical studies

    Get PDF
    It is an attractive hypothesis that the spatial structure of visual cortical architecture can be explained by the coordinated optimization of multiple visual cortical maps representing orientation preference (OP), ocular dominance (OD), spatial frequency, or direction preference. In part (I) of this study we defined a class of analytically tractable coordinated optimization models and solved representative examples in which a spatially complex organization of the orientation preference map is induced by inter-map interactions. We found that attractor solutions near symmetry breaking threshold predict a highly ordered map layout and require a substantial OD bias for OP pinwheel stabilization. Here we examine in numerical simulations whether such models exhibit biologically more realistic spatially irregular solutions at a finite distance from threshold and when transients towards attractor states are considered. We also examine whether model behavior qualitatively changes when the spatial periodicities of the two maps are detuned and when considering more than 2 feature dimensions. Our numerical results support the view that neither minimal energy states nor intermediate transient states of our coordinated optimization models successfully explain the spatially irregular architecture of the visual cortex. We discuss several alternative scenarios and additional factors that may improve the agreement between model solutions and biological observations.Comment: 55 pages, 11 figures. arXiv admin note: substantial text overlap with arXiv:1102.335

    Cheating the locals: invasive mussels steal and benefit from the cooling effect of indigenous mussels

    Get PDF
    The indigenous South African mussel Perna perna gapes during periods of aerial exposure to maintain aerobic respiration. This behaviour has no effect on the body temperatures of isolated individuals, but when surrounded by conspecifics, beneficial cooling effects of gaping emerge. It is uncertain, however, whether the presence of the invasive mussel Mytilus galloprovincialis limits the ability of P. perna for collective thermoregulation. We investigated whether varying densities of P. perna and M. galloprovincialis influences the thermal properties of both natural and artificial mussel beds during periods of emersion. Using infrared thermography, body temperatures of P. perna within mixed artificial beds were shown to increase faster and reach higher temperatures than individuals in conspecific beds, indicating that the presence of M. galloprovincialis limits the group cooling effects of gaping. In contrast, body temperatures of M. galloprovincialis within mixed artificial mussel beds increased slower and exhibited lower temperatures than for individuals in beds comprised entirely of M. galloprovincialis. Interestingly, differences in bed temperatures and heating rates were largely dependent on the size of mussels, with beds comprised of larger individuals experiencing less thermal stress irrespective of species composition. The small-scale patterns of thermal stress detected within manipulated beds were not observed within naturally occurring mixed mussel beds. We propose that small-scale differences in topography, size-structure, mussel bed size and the presence of organisms encrusting the mussel shells mask the effects of gaping behaviour within natural mussel beds. Nevertheless, the results from our manipulative experiment indicate that the invasive species M. galloprovincialis steals thermal properties as well as resources from the indigenous mussel P. perna. This may have significant implications for predicting how the co-existence of these two species may change as global temperatures continue to rise

    Emergent global patterns of ecosystem structure and function from a mechanistic general ecosystem model

    Get PDF
    Anthropogenic activities are causing widespread degradation of ecosystems worldwide, threatening the ecosystem services upon which all human life depends. Improved understanding of this degradation is urgently needed to improve avoidance and mitigation measures. One tool to assist these efforts is predictive models of ecosystem structure and function that are mechanistic: based on fundamental ecological principles. Here we present the first mechanistic General Ecosystem Model (GEM) of ecosystem structure and function that is both global and applies in all terrestrial and marine environments. Functional forms and parameter values were derived from the theoretical and empirical literature where possible. Simulations of the fate of all organisms with body masses between 10 µg and 150,000 kg (a range of 14 orders of magnitude) across the globe led to emergent properties at individual (e.g., growth rate), community (e.g., biomass turnover rates), ecosystem (e.g., trophic pyramids), and macroecological scales (e.g., global patterns of trophic structure) that are in general agreement with current data and theory. These properties emerged from our encoding of the biology of, and interactions among, individual organisms without any direct constraints on the properties themselves. Our results indicate that ecologists have gathered sufficient information to begin to build realistic, global, and mechanistic models of ecosystems, capable of predicting a diverse range of ecosystem properties and their response to human pressures

    The muscle – fat duel or why obese children are taller?

    Get PDF
    BACKGROUND: Obesity the epidemic of our times appears to be a problem that is easy to resolve: just eat less and move more. However, this very common condition has turned out to be extremely troublesome, and in some cases even irreversible. METHODS: The interplay between less muscle and more fat tissue is discussed from physiological perspectives with an emphasis on the early years of childhood. RESULTS: It is suggested that the coordinated muscle-fat interactions lead to a fluctuating exchange economy rate. This bodily economic decision, slides between thrift (more fat) and prodigal (more muscle) strategies. The thrift strategy results not only in obesity and less physical activity but also in other maladies which the body is unable to manage. What leads to obesity (less muscle, more fat) might be very difficult to reverse at adulthood, prevention at childhood is thus recommended. CONCLUSION: Early recognition of the ailment (low muscle mass) is crucial. Based on studies demonstrating a 'rivalry' between muscle build-up and height growth at childhood, it is postulated that among the both taller and more obese children the percentage of children with lower muscle mass will be higher. A special, body/muscle-building gymnastics program for children is suggested as a potential early intervention to prevent the ill progress of obesity

    Functional magnetic resonance imaging (fMRI) of attention processes in presumed obligate carriers of schizophrenia: preliminary findings

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Presumed obligate carriers (POCs) are the first-degree relatives of people with schizophrenia who, although do not exhibit the disorder, are in direct lineage of it. Thus, this subpopulation of first-degree relatives could provide very important information with regard to the investigation of endophenotypes for schizophrenia that could clarify the often contradictory findings in schizophrenia high-risk populations. To date, despite the extant literature on schizophrenia endophenotypes, we are only aware of one other study that examined the neural mechanisms that underlie cognitive abnormalities in this group. The aim of this study was to investigate whether a more homogeneous group of relatives, such as POCs, have neural abnormalities that may be related to schizophrenia.</p> <p>Methods</p> <p>We used functional magnetic resonance imaging (fMRI) to collect blood oxygenated level dependent (BOLD) response data in six POCs and eight unrelated healthy controls while performing under conditions of sustained, selective and divided attention.</p> <p>Results</p> <p>The POCs indicated alterations in a widely distributed network of regions involved in attention processes, such as the prefrontal and temporal (including the parahippocampal gyrus) cortices, in addition to the anterior cingulate gyrus. More specifically, a general reduction in BOLD response was found in these areas compared to the healthy participants during attention processes.</p> <p>Conclusion</p> <p>These preliminary findings of decreased activity in POCs indicate that this more homogeneous population of unaffected relatives share similar neural abnormalities with people with schizophrenia, suggesting that reduced BOLD activity in the attention network may be an intermediate marker for schizophrenia.</p

    NAViGaTing the Micronome – Using Multiple MicroRNA Prediction Databases to Identify Signalling Pathway-Associated MicroRNAs

    Get PDF
    MicroRNAs are a class of small RNAs known to regulate gene expression at the transcript level, the protein level, or both. Since microRNA binding is sequence-based but possibly structure-specific, work in this area has resulted in multiple databases storing predicted microRNA:target relationships computed using diverse algorithms. We integrate prediction databases, compare predictions to in vitro data, and use cross-database predictions to model the microRNA:transcript interactome--referred to as the micronome--to study microRNA involvement in well-known signalling pathways as well as associations with disease. We make this data freely available with a flexible user interface as our microRNA Data Integration Portal--mirDIP (http://ophid.utoronto.ca/mirDIP).mirDIP integrates prediction databases to elucidate accurate microRNA:target relationships. Using NAViGaTOR to produce interaction networks implicating microRNAs in literature-based, KEGG-based and Reactome-based pathways, we find these signalling pathway networks have significantly more microRNA involvement compared to chance (p<0.05), suggesting microRNAs co-target many genes in a given pathway. Further examination of the micronome shows two distinct classes of microRNAs; universe microRNAs, which are involved in many signalling pathways; and intra-pathway microRNAs, which target multiple genes within one signalling pathway. We find universe microRNAs to have more targets (p<0.0001), to be more studied (p<0.0002), and to have higher degree in the KEGG cancer pathway (p<0.0001), compared to intra-pathway microRNAs.Our pathway-based analysis of mirDIP data suggests microRNAs are involved in intra-pathway signalling. We identify two distinct classes of microRNAs, suggesting a hierarchical organization of microRNAs co-targeting genes both within and between pathways, and implying differential involvement of universe and intra-pathway microRNAs at the disease level

    Integration of robotic surgery into routine practice and impacts on communication, collaboration, and decision making: A realist process evaluation protocol

    Get PDF
    Background: Robotic surgery offers many potential benefits for patients. While an increasing number of healthcare providers are purchasing surgical robots, there are reports that the technology is failing to be introduced into routine practice. Additionally, in robotic surgery, the surgeon is physically separated from the patient and the rest of the team, with the potential to negatively impact teamwork in the operating theatre. The aim of this study is to ascertain: how and under what circumstances robotic surgery is effectively introduced into routine practice; and how and under what circumstances robotic surgery impacts teamwork, communication and decision making, and subsequent patient outcomes. Methods and design: We will undertake a process evaluation alongside a randomised controlled trial comparing laparoscopic and robotic surgery for the curative treatment of rectal cancer. Realist evaluation provides an overall framework for the study. The study will be in three phases. In Phase I, grey literature will be reviewed to identify stakeholders' theories concerning how robotic surgery becomes embedded into surgical practice and its impacts. These theories will be refined and added to through interviews conducted across English hospitals that are using robotic surgery for rectal cancer resection with staff at different levels of the organisation, along with a review of documentation associated with the introduction of robotic surgery. In Phase II, a multi-site case study will be conducted across four English hospitals to test and refine the candidate theories. Data will be collected using multiple methods: the structured observation tool OTAS (Observational Teamwork Assessment for Surgery); video recordings of operations; ethnographic observation; and interviews. In Phase III, interviews will be conducted at the four case sites with staff representing a range of surgical disciplines, to assess the extent to which the results of Phase II are generalisable and to refine the resulting theories to reflect the experience of a broader range of surgical disciplines. The study will provide (i) guidance to healthcare organisations on factors likely to facilitate successful implementation and integration of robotic surgery, and (ii) guidance on how to ensure effective communication and teamwork when undertaking robotic surgery

    The importance of considering community-level effects when selecting insecticidal malaria vector products

    Get PDF
    BACKGROUND\ud \ud Insecticide treatment of nets, curtains or walls and ceilings of houses represent the primary means for malaria prevention worldwide. Direct personal protection of individuals and households arises from deterrent and insecticidal activities which divert or kill mosquitoes before they can feed. However, at high coverage, community-level reductions of mosquito density and survival prevent more transmission exposure than the personal protection acquired by using a net or living in a sprayed house.\ud \ud METHODS\ud \ud A process-explicit simulation of malaria transmission was applied to results of 4 recent Phase II experimental hut trials comparing a new mosaic long-lasting insecticidal net (LLIN) which combines deltamethrin and piperonyl butoxide with another LLIN product by the same manufacturer relying on deltamethrin alone.\ud \ud RESULTS\ud \ud Direct estimates of mean personal protection against insecticide-resistant vectors in Vietnam, Cameroon, Burkina Faso and Benin revealed no clear advantage for combination LLINs over deltamethrin-only LLINs (P = 0.973) unless both types of nets were extensively washed (Relative mean entomologic inoculation rate (EIR) ± standard error of the mean (SEM) for users of combination nets compared to users of deltamethrin only nets = 0.853 ± 0.056, P = 0.008). However, simulations of impact at high coverage (80% use) predicted consistently better impact for the combination net across all four sites (Relative mean EIR ± SEM in communities with combination nets, compared with those using deltamethrin only nets = 0.613 ± 0.076, P < 0.001), regardless of whether the nets were washed or not (P = 0.467). Nevertheless, the degree of advantage obtained with the combination varied substantially between sites and their associated resistant vector populations.\ud \ud CONCLUSION\ud \ud Process-explicit simulations of community-level protection, parameterized using locally-relevant experimental hut studies, should be explicitly considered when choosing vector control products for large-scale epidemiological trials or public health programme procurement, particularly as growing insecticide resistance necessitates the use of multiple active ingredients
    corecore