1,733 research outputs found

    Synergistic Effects of Temperature and Salinity on the Gene Expression and Physiology of Crassostrea virginica

    Get PDF
    Crassostrea virginica, the eastern oyster, forms reefs that provide critical services and benefits to the resiliency of the surrounding ecosystem. Changes in environmental conditions, including salinity and temperature, can dramatically alter the services oysters provide by affecting their population dynamics. Climate warming may further exacerbate the effects of salinity changes as precipitation events increase in frequency, intensity, and duration. Temperature and salinity independently and synergistically influence gene expression and physiology in marine organisms. We used comparative transcriptomics, physiology, and a field assessment experiment to investigate whether Louisianan oyster are changing their phenotypes to cope with increased temperature and salinity stress in Gulf of Mexico. Oysters from Sister Lake, Louisiana were exposed to fully crossed temperature (20°C and 30°C) and salinity (25ppt, 15ppt, and 7ppt) treatments. We found a higher number of genes were differentially expressed (downregulated) in response to low salinity at warmer temperatures – suggesting metabolic suppression. Gene ontology terms for ion transport and microtubule based processes were significantly enriched among upregulated genes in response to low salinity. Ion transport plays a role in osmolyte regulation which is important to maintain cell volume during low salinity. Microtubule based processes play a role in ciliary action which can improve fluid transport, prolonging aerobic metabolism and survival at low salinities. Oyster respiration rate significantly increased between 20°C and 30°C but, despite the higher energetic demands the clearance rate did not comparably increase. To investigate transcriptional differences in wild populations, we collected tissue from three locations across the Louisiana Gulf. We determined the expression levels of seven target genes and found an upregulation of genes that function in osmolyte transport, oxidative stress mediation, apoptosis, and protein synthesis at our low salinity site and sampling time point. Overall, oysters altered their phenotype more in response to low salinity at higher temperatures as evidenced by a higher number of differentially expressed genes during laboratory exposure, increased respiration (higher energetic demands), differentially expression by season and location. Warm temperatures lower the eastern oyster’s ability to cope with low salinities; the timing and length of low salinity exposure is important for understanding oyster recruitment, mortality, and growth

    High-Tc Superconducting Bolometer Noise Measurement Using Low Noise Transformers - Theory and Optimization

    Get PDF
    Care must always be taken when performing noise measurements on high-Tc superconducting materials to ensure that the results are not from the measurement system itself. One situation likely to occur is with low noise transformers. One of the least understood devices, it provides voltage gain for low impedance inputs (< 100 ), e.g., YBaCuO and GdBaCuO thin films, with comparatively lower noise levels than other devices for instance field effect and bipolar junction transistors. An essential point made in this paper is that because of the complex relationships between the transformer ports, input impedance variance alters the transformer s transfer function in particular, the low frequency cutoff shift. The transfer of external and intrinsic transformer noise to the output along with optimization and precautions are treated; all the while, we will cohesively connect the transfer function shift, the load impedance, and the actual noise at the transformer output

    Intermolecular 1,3-dipolar cycloadditions of azomethine imines

    Get PDF
    Dipolar cycloadditions of azomethine imines, formed in situ from aldehydes and N1-alkyl-N2-acylhydrazines, with electron-deficient dipolarophiles produce pyrazolidines: mono-substituted dipolarophiles afford principally 4-substituted pyrazolidines

    Instrument Suite for Vertical Characterization of the Ionosphere-Thermosphere System

    Get PDF
    A document describes a suite that provides four simultaneous ion and neutral-atom measurements as a function of altitude, with variable sensitivity for neutral atmospheric species. The variable sensitivity makes it possible to extend the measurements over the altitude range of 100 to more than 700 km. The four instruments in the suite are (1) a neutral wind-temperature spectrometer (WTS), (2) an ion-drift ion-temperature spectrometer (IDTS), (3) a neutral mass spectrometer (NMS), and (4) an ion mass spectrometer (IMS)

    Receiver Gain Modulation Circuit

    Get PDF
    A receiver gain modulation circuit (RGMC) was developed that modulates the power gain of the output of a radiometer receiver with a test signal. As the radiometer receiver switches between calibration noise references, the test signal is mixed with the calibrated noise and thus produces an ensemble set of measurements from which ensemble statistical analysis can be used to extract statistical information about the test signal. The RGMC is an enabling technology of the ensemble detector. As a key component for achieving ensemble detection and analysis, the RGMC has broad aeronautical and space applications. The RGMC can be used to test and develop new calibration algorithms, for example, to detect gain anomalies, and/or correct for slow drifts that affect climate-quality measurements over an accelerated time scale. A generalized approach to analyzing radiometer system designs yields a mathematical treatment of noise reference measurements in calibration algorithms. By treating the measurements from the different noise references as ensemble samples of the receiver state, i.e. receiver gain, a quantitative description of the non-stationary properties of the underlying receiver fluctuations can be derived. Excellent agreement has been obtained between model calculations and radiometric measurements. The mathematical formulation is equivalent to modulating the gain of a stable receiver with an externally generated signal and is the basis for ensemble detection and analysis (EDA). The concept of generating ensemble data sets using an ensemble detector is similar to the ensemble data sets generated as part of ensemble empirical mode decomposition (EEMD) with exception of a key distinguishing factor. EEMD adds noise to the signal under study whereas EDA mixes the signal with calibrated noise. It is mixing with calibrated noise that permits the measurement of temporal-functional variability of uncertainty in the underlying process. The RGMC permits the evaluation of EDA by modulating the receiver gain using an external signal. Without the RGMC, samples of calibrated references from radiometers form an ensemble data set of the natural occurring fluctuations within a receiver. By driving the gain of an otherwise stable receiver with an external signal, the conceptual framework and generalization of the mathematics of EDA can be tested. A series of measurements was conducted to evaluate and characterize the performance of the RGMC. Test signals stepped the RGMC across its dynamic range of performance using a radiometer that sampled four noise references; analysis indicates that the RGMC successfully modulated the receiver gain with an external signal. Calibration algorithms applied to four noise references demonstrate the RGMC produced ensemble data sets of the external signal

    Soil Profile Pit at BIFoR-FACE, Norbury Junction, Staffordshire

    Get PDF
    Soil profile description of the woodland soil at the BIFoR FACE woodland experimental facility at Mill Haft, Norbury Junction, Staffordshire. The profile description was carried out by representatives of the British Society of Soil Science in July 2021

    Spatial co‐localisation of extreme weather events: a clear and present danger

    Get PDF
    Extreme weather events have become a dominant feature of the narrative surrounding changes in global climate with large impacts on ecosystem stability, functioning and resilience; however, understanding of their risk of co‐occurrence at the regional scale is lacking. Based on the UK Met Office’s long‐term temperature and rainfall records, we present the first evidence demonstrating significant increases in the magnitude, direction of change and spatial co‐localisation of extreme weather events since 1961. Combining this new understanding with land‐use data sets allowed us to assess the likely consequences on future agricultural production and conservation priority areas. All land‐uses are impacted by the increasing risk of at least one extreme event and conservation areas were identified as the hotspots of risk for the co‐occurrence of multiple event types. Our findings provide a basis to regionally guide land‐use optimisation, land management practices and regulatory actions preserving ecosystem services against multiple climate threats

    Submillimeter continuum observations of Sagittarius B2 at subarcsecond spatial resolution

    Get PDF
    We report the first high spatial resolution submillimeter continuum observations of the Sagittarius B2 cloud complex using the Submillimeter Array (SMA). With the subarcsecond resolution provided by the SMA, the two massive star-forming clumps Sgr B2(N) and Sgr B2(M) are resolved into multiple compact sources. In total, twelve submillimeter cores are identified in the Sgr B2(M) region, while only two components are observed in the Sgr B2(N) clump. The gas mass and column density are estimated from the dust continuum emission. We find that most of the cores have gas masses in excess of 100 M_{\odot} and column densities above 1025^{25} cm2^{-2}. The very fragmented appearance of Sgr B2(M), in contrast to the monolithic structure of Sgr B2 (N), suggests that the former is more evolved. The density profile of the Sgr B2(N)-SMA1 core is well fitted by a Plummer density distribution. This would lead one to believe that in the evolutionary sequence of the Sgr B2 cloud complex, a massive star forms first in an homogeneous core, and the rest of the cluster forms subsequently in the then fragmenting structure.Comment: 4 pages, 2 figures, accepted by A&A letter
    corecore