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Abstract. Care must always be taken when performing noise measurements on high-Tc 
superconducting materials to ensure that the results are not from the measurement system itself. 
One situation likely to occur is with low noise transformers. One of the least understood devices, it 
provides voltage gain for low impedance inputs (< 100Ω), e.g., YBaCuO and GdBaCuO thin 
films, with comparatively lower noise levels than other devices for instance field effect and 
bipolar junction transistors. An essential point made in this paper is that because of the complex 
relationships between the transformer ports, input impedance variance alters the transformer’s 
transfer function—in particular, the low frequency cutoff shift. The transfer of external and 
intrinsic transformer noise to the output along with optimization and precautions are treated; all 
the while, we will cohesively connect the transfer function shift, the load impedance, and the 
actual noise at the transformer output. 
 

 
1.  Introduction 
 

Complete transformer theory and analysis is widely covered in literature, e.g., Ref. [1]; yet, there is 
little that also treats noise. This tutorial paper explores the noise generated within the transformer and its 
relationship to the input and output ports. We examine the transformer as a passive, noise-free network 
described by an impedance matrix and establish voltage gain relationships between the input and output 
ports, considering the input source impedance and output load, as well as other relationships [2]. The 
noise spectral density of the output is then calculated and its connection to other parts of the transformer 
investigated. Referring the noise to the input by creating equivalent noise sources and the understanding 
of a simplified noise-generating circuit will illuminate the limits of the noise measurements in terms of 
source impedance and frequency [3]. From this same circuitry, a commonly used figure of merit—the 
noise factor—is derived and its advantages are discussed [8]. Finally, we look at the transformer output 
impedance and its relationship to a subsequent gain device(s), such as a low noise amplifier or a spectrum 
analyzer, in order to examine the total system noise and the signal-to-noise ratio [13]. 
 
2.  Transformer Network Analysis 
 

 In this work, the transformer is treated as a network in which the internal elements are described 
mathematically at the input/output ports [2]. The transformer shown in figure 1(a) consists of two 
windings of resistances Rp and Rs with inductances Lp and Ls mutually connected by M—subscripts ‘p’ 
and ‘s’ indicate primary and secondary. Mutual inductance is defined as , where 0 ≤ k ≤ 1 
is the coefficient of coupling between the windings. In this work,  and stray capacitances are 

neglected. The turns-ratio of the p-s windings is , where Vp and Vs are the voltages across Lp 

and Ls. 
An active or passive device connected to signal source Vg of internal impedance Zg and to load ZL at 

the output can be analyzed as a two-port, z-parameter network as depicted in figure 1(b). The central 
larger box represents the transformer circuit of figure 1(a) and, for now, is considered noise free. The 
impedance matrix Z represents elements inside the box such that the voltages and currents at the input and 
output ports are described by,  
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   (1) 

 
The immittance parameters z11 and z22 in (1) are the self-impedances and z12 and z21 are the transfer- 

or—for the transformer—mutual-impedances. The z-parameters are determined by a combination of ratio 
and open-circuit configurations of the voltages and currents at and into the ports: 
 

 (a)   (b)  (c)  and  (d)   (2) 

 
Applying (2a)-(2d) to the transformer network gives the following z-parameters as functions of s = jω, 
 

 (a)   (b)   (c) and    (3)  
 

Looking into the kth port with the jth port open (Ij = 0) implies M = 0; thus impedances zkk are separate 
series combinations of winding resistances and inductances—z12 = z21 is found through the Laplace 

transform of Faraday’s Law, . 

Referring to figure 1(b), the input and output impedances are determined by looking into the primary 
winding with signal source Vg and source and load impedances, Zg and ZL, respectively. The primary 
impedance, Zp, is found by inserting  into (1) and solving for I2. The secondary impedance, 
Zs, is found by setting Vg = 0, substituting  in (1) and solving for I1. The results are, 

 

 (a)   and  (b)    (4) 

 
 Relating this to the transformer by substituting (3a)-(3c) into (4a) and (4b) gives, 

 

(a)    and  (b)    (5) 

 
The last terms on the right hand sides of (4a) and (4b)—or (5a) and (5a)—are the transformer’s 

secondary and primary reflection impedances, Zrs and Zrp, respectively. The impedance looking into a 
transformer port equals its self-impedance, zkk, minus the reflected impedance of the other port(s); thus, 
the primary and secondary impedances are Zp = z11 − Zrs and Zs = z22 − Zrp. The reflected impedances have 
a phase relationship to zkk that increases the magnitude and, depending on termination impedances and 
frequency, can make up a good portion of the total port impedance. 

The transformer network of figure 1(b) has two types of voltage gain: the system voltage gain, 
, and the network voltage gain, . Since Zg is the internal impedance 

of the voltage source Vg, H(s) cannot be directly measured.  can be a good approximation, but 
when dealing with comparable input impedances, a distinction must be made—references to Vg must 
involve V1 in figure 1(b). Also, as a passive device, the transformer’s impedances and correspondingly the 
system and network gains are dependent on termination impedances Zg and ZL. 

Considering the two voltage gains under an unloaded condition (i.e., removing ZL) sets I2 = 0 in (1) 
yielding V1 = z11·I1 and V2 = z21·I1. These give open-circuit expressions for T(s) and H(s), 

 

 (a)   and  (b)    (6) 

 
Reinserting ZL and replacing both Vg and Zg with voltage source V1, the network voltage gain from (1) is, 
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   (7) 

 
The substitution of  into (7) gives the system transfer function, 
 

     (8)

          
As |ZL| → ∞, (7) and (8) approach the open-circuit equations of (6a) and (6b), respectively. Equation (8) 
merely adds Zg to z11 in (7) making it the special case T(s) = H(Zg = 0, s). 

From here on, to simplify matters, Zg is replaced with source resistance Rg and ZL is replaced with 
load resistance RL. Substituting the z-parameters of (3a)-(3c) into (8) results in the system transfer 
function in terms of the transformer elements, 

 
  (9) 

 
Examination of (9) reveals that the shape of the transfer function shifts with Rg—that is, there is 
sensitivity to Rg. There is sensitivity to RL as well; however, it is usually constant and typically RL >> Rs. 
In fact to simplify matters again, occurrences of RL + Rs terms will be replaced with RL in this work. 

Note that (9) can be rearranged into the familiar second-order bandpass statement, 
 

    (10) 

  
where the natural frequency, ωm, and quality factor, Q, (hence bandwidth, ) are functions of Rg. 

The coefficients are, ,   , and . 

The magnitude density, , and the phase angle, , 

are found to be, 
      (11)  

and  

     (12) 

 
The relationship for maximum gain, , and the lower 3dB cutoff frequency, 

, gives,                                                            

 
     (13) 

and, 
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      (14) 

 
The high frequency cutoff is, ωH =  ωB − ωL;  typically, however, ωH ≈ ωB. 

A low noise transformer model is developed here based on the PARC 1900 low-noise transformer 
using the 1:1000 ports [4]. The model element values are listed in inset of figure 2—from here on these 
will be referred to as the “model parameters.” The parameters, along with Rg and RL values, are inserted 
into (11) and (12) to give the responses seen in figures 2(a) and 2(b). The gain is displayed in dB,

, and the phase in degrees. Figure 2(a) depicts the shift of the frequency response as Rg 
varies. The shift of the upper cutoff frequency is negligible compared to the lower cutoff frequency. 
Utilizing (14), a linear relationship between Rg and lower cutoff frequency, fL, is displayed in figure 3(a). 
The absolute sensitivity of fL to Rg, ( ), is shown in figure 3(b). Extrapolation shows a near-

unity sensitivity peak at Rg = 6.4Ω; afterwards, it gradually descends to zero (not shown). 
For later discussion, three forms of power gains are defined: i) power gain, , ii) available 

power gain, , and iii) transducer power gain,  [2]. P1 is the primary average power and 

P2 is the secondary average power delivered to the load. P1a is the primary maximum available average 
power—the power extracted through power matching with Vg and Zg—and P2a is the load maximum 
available average power. Conjugate-matched terminations are assumed for P1a and P2a. The powers P1, P2 
and P1a are defined as, 

 

 (a)  , (b)  , and  (c)      (15) 

 
A Thévenin equivalent network of figure 1(b) with Zg terminated into Vg defines P2a. Looking back 

into the open-circuit output, the equivalent voltage is determined by (6b) and the equivalent secondary 
impedance by (4b). For series-connected Veq and Zeq, 
 

 (a)     and  (b)      (16) 

 
The secondary’s maximum available average power occurs at . Applying   
to  in (16a) and (16b), the load’s maximum available power is, 
 

     (17) 

 
To facilitate calculating power gains, current gain is derived by substituting  in (1), 

 

     (18) 

 
which when worked into ratio  gives the simple power gain. The ratio of (17) and (15c) yields the 
available power gain. Both power gains are written respectively as, 
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 (a)   and  (b)       (19) 

in which Zeq is replaced with Zs. Finally, the transducer power gain from the ratio of (15b) and (15c), the 
application of (18), and the substitution of Vg = I1·(Zg + Zp) is given by, 
 

     (20) 

 
After substituting (3a)-(3c) and (5a)-(5b) into (19a) and (19b), the power gains as functions of ω and Rg 
are, 

   (21a) 

and 

   (21b) 

 
followed by substitution of (3a)-(3c) into the right-hand side of (20) to derive the transducer power gain, 
    

 

    (22) 

Comparison of (22) to (11) reveals the relationship, . Because the transformer is a 

passive device, i.e., no external power is extracted, power gain equations (21a), (21b), and (22) are 
always less than unity. 
 
3. Noise Generation in the Transformer 
 
3.1.  Noise definitions 
 

Johnson and Nyquist established the theoretical basis for Brownian-type electrical noise in 1928 [5,6]. 
Referred to as Johnson, Nyquist, white, thermal, etc., noise, all imply the same thing: a thermally excited 
vibration of the charge carriers in a conductor [3]. Other forms of transformer noise can be considered, 
e.g., 1/f or Barkhausen noise [7], but for simplicity, only Johnson noise is examined here. 

Although random vibrations give zero average currents in conductors, the instantaneous current 
fluctuations cause voltage fluctuations across any set of terminals. The available noise power in the 
conductor is, 

     (23) 
 
where kB is the Boltzmann’s constant (1.38 X 10-23 J·K−1), T is the conductor’s absolute temperature in 
Kelvin, and Δf is the noise bandwidth of the measurement system [3,6]. “Available” implies maximum 
power measured under conjugate-matched conditions. 

Assume a noise source such as the resistance member of element Zt as depicted in figure 4(a) in 
which Et represents the generated noise voltage. Given that Zt is a series equivalent resistance and 
reactance, Zt(ω) = Rt(ω) + jXt(ω), to extract the available power, a conjugate load, Zt

*(ω) = Rt(ω) − jXt(ω), 
is placed at the terminals as in figure 4(b). The reactances cancel and the real parts form a voltage divider 
such that Eo = Et/2, where Eo is the voltage measured at the load. The power dissipated at the load, the 
available power, is related to (23) by [6], 
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       (24) 

and this leads to an expression for the thermally generated r.m.s. voltage across any impedance element, 
 
     (25) 
 
To discern the independence of the noise bandwidth, both sides of (25) are divided by √Δf obtaining the 
root normalized noise spectral density in volts per unit root hertz [8], 
 
     (26) 
 
The approximation  is common; that is, Re(Z) is replaced with resistor R leaving the spectral 
distribution flat at all frequencies.  However, according to (26)—and in practice—the spectral density is 
only as flat as the real part of the source impedance producing the noise. The spectral density in (26) is 
usually referred to as narrow-band noise (the noise content within a 1Hz interval) and Et in (25) is 
referred to as wide-band noise (the noise content in rectangular-shaped bandwidth Δf ) [3,8].  

Now consider an amplifier that measures external noise with transfer function H(s). The noise power 
content in the interval Δf is not the same as that in the signal transfer bandwidth. The signal power content 
lies in the frequency span, B = fH – fL, between the ½ power (or −3dB) points. However, noise bandwidth 
is described by a rectangular power content that is equivalent to the total area under the power gain curve 
throughout its entire frequency span (0, ∞) divided by its maximum—it is known as the equivalent noise 
bandwidth (ENB) because of the equivalent base x height interval. With the power gain equal to the 
square-magnitude of the transfer function, recalling (11) and (13), the ENB (or Δf ) is defined here as, 

 
     (27) 

 
The ENB is relative to the −3dB bandwidth, B, except for a few filters such as a Chebyshev or 

Legendre of orders > 3 where it is larger than B [9]. Applying (27) to a 1st-order lowpass filter reduces it 
to, , where fc is the −3dB cutoff frequency. For a mth-order, a lowpass filter with m > 1 
gives, . 

To understand the role of (27) in noise amplification, assume resistor Rg is connected to the network 
input of figure 1(b) using inset parameters in figure 2. Although hypothetical, also assume that a true-
r.m.s., infinite bandwidth, impedance meter measures the noise voltage at the output shown by the setup 
in figure 5. With Et as the thermal noise voltage generated by Rg and its spectral density defined by (26), 
the r.m.s. output voltage with any given Rg is, 

 
     (28) 

 
Neglecting reactive elements, if the spectral density is constant with frequency such that 

, then (28) is modified to, 

             (29)       

 
where (28) is seen in the brackets on the right hand side. Through (29), equation (28) reduces to, 
 
     (30) 
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Dividing both sides of (30) by √Δf produces the noise voltage spectral density, Sno, at the output, 
 
     (31) 

 
   
3.2. Noise definitions applied to low-noise transformer 
 

Inserting the transformer elements and substituting Amax from (13) and the spectral density of (26) into 
(31) provides the maximum output noise spectral density, 
 

 (a)   or,  (b)      (32) 

 
in which n is the turns-ratio and RL is removed in (34b). 

Although equations (29)-(32) are considered ideal and the output noise is calculated by knowledge of 
the input noise, in actual practice the reverse is calculated: the measured output noise is referred to the 
input by dividing by the gain. As a function of frequency and Rg, the referred to input (RTI) noise spectral 
density is expressed as, 

     (33) 

 
With the bandpass response of the transformer, the input spectral density Sni will have a U-shaped 
response—1/f noise and other factors have effect on actual measurements, but they are discounted here. 
 To obtain Sno(Rg,ω), Nyquist’s theorem is invoked: the output noise spectral density is dependent on 
the resistance member of the output impedance. Utilizing (26), the output impedance is the parallel 
combination of the Zs given in (5b) and ZL. With ZL = RL such that RL >> Rs, the real part Ro = Re(Zo) is 
closely approximated by, 
 

     (34)  

     

 
 Substitution of (34) into (26) then gives the output noise voltage spectral density in terms of Rg,  
 
     (35) 

 
To obtain the input noise voltage spectral density, the placement of noise source Et in series with the 

input signal source Vg in figure 1(b)—assuming that the remainder of the network is noiseless—gives the 
solution. Since the individual transformer noise sources are uncorrelated, by superposition, the root-sum-
squares of the noise sources can be referred to the input as a single noise source, Sni, stated by (33). Based 
on model parameters (see inset of figure 2), for decade steps of Rg used in (35), figure 6(a) plots the 
output noise voltage spectral density curve family. In figure 6(b), the input noise voltage spectral density 
curves are derived by dividing (35) by the gain of (11). The results agree with PSpice simulations. 

Note that Rg = 0Ω does not yield zero output noise; there is always intrinsic noise. For example, at f = 
100Hz in figure 6(b) with Rg = 0Ω, Sni = 0.035nV/√Hz. Thus, the thermal noise generated by Rg is mixed 
with the transformer’s noise floor. Rg noise can be somewhat obtained by subtracting in quadrature the 
spectral density baseline Sni(Rg = 0, ω) from the Sni(Rg ≠ 0, ω) plots, 
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     (36) 
 
From the results shown in figure 7, although this method corrects for low values, as Rg increases, another 
noise contribution becomes evident—the asymptotically flat “corrected” spectral density regions show 
this. The spectral density values are compared to the values generated by Rg with the relative errors and 
placed into table 1. It is clear that an extra noise source dominates as Rg increases—for example, a 5% 
error is surpassed before Rg = 100Ω; at 1kΩ the error is ~42%! Hence, maintaining as low as possible Rg, 
yet remaining greater than the equivalent resistance (0.074Ω, as calculated from the baseline spectral 
density) is the proper course. 
 
3.3. Defining intrinsic noise sources  
 

To reiterate, if Rg is too low, an intrinsic, baseline noise voltage dominates the measurement; on the 
other hand, for large Rg—although the baseline noise is removed—another noise source dominates. This 
section describes these intrinsic noise sources as well-placed, independent and equivalent noise sources. 

We first look at the network box in figure 1(b) without elements Vg, Zg, and ZL and treat each port as a 
connection to a one-port network with an opposite open-circuit port [8]. Through Thévenin’s theorem, a 
noiseless network port responds similar to signal input—except there are two noise voltage generators 
inserted at both ports as shown in figure 8(a). Noise is extracted out of the network box to the external 
noise sources; the spectral densities of these sources are measured at each port with the opposite port 
open. To define these, the primary and secondary noise voltage generators Ep and Es are added to the 
voltage vector of (1) yielding the linear equations, 
 
 (a)   and    (b)     (37) 
 
Ep and Es are partially correlated since they represent different fractions of the same internal noise 
mechanisms [8]. 

Now consider the arrangement in figure 8(b) where voltage and current noise generators, En and In, 
are placed at only the primary port. To show the relationship of this arrangement to that in figure 8(a), the 
statements derived from (1) for figure 8(b) are [8,10], 
 
 (a)   and   (b)       (38) 
 
Examination of figure 8(b) shows we have expressions  and  that when combined 
into (38a) and (38b) lead to, 
 

 (a)    and    (b)       (39) 
 

 Comparing (39) and (37) reveal that Ep and Es are related to En and In by, 
 
 (a)  and    (b)     (40) 
 
Substitution of (3a) and (3b) into (40a) and (40b) relates Ep and Es to the transformer elements: 
 

 (a)  and  (b)     (41) 
 

Since Ep and Es of (41) are partially correlated, by (40) En and In are also partially correlated; however, to 
ease calculations, consider En and In as totally uncorrelated and adequate to represent the total noise [3,8]. 

The noise source configurations in figures 8(a) and 8(b) are both independent of Rg, and, if 
considered, the arrangement of figure 8(b) proves more advantageous in analyzing noise. Figure 9 shows 
the complete equivalent transformer circuit that highlights the topology of the input port signal, Vg, and 
noise sources Et, En, and In; the single RTI noise source Eni can replace Vg in order to represent to total 
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input noise seen at the source terminals. A salient point here is that this circuit is independent of the gain 
and the input impedance of the transformer.  

Recalling (7) and (8), the relationship between the system and network gains in figure 9 is given by, 
 

     (42) 

 
The noise voltage Eno due to Ei at the input port or due to the RTI source Eni assuming Vg = 0, is 
calculated by,  
     (43) 
 
The last two terms are of interest and from this the input port noise is, 

. Inserting this into (43) yields the r.m.s.-squared noise at the 

output, 

     (44) 

 
The RTI noise source then can be derived by (43), i.e., Eni = Eno/|H|, and by noting the right side of (42) 
appears inside (44). Then after reduction, 
 
     (45) 
 
shows that the RTI noise source is independent of system gain, H, and input impedance, Zp. 

Eni is defined by three noise generators: Rg noise voltage, Et, and two intrinsic noise generators, En and 
In. Since Eni and Et can be established, solving for En and In is straightforward. Via equations (45) and 
(25), as Rg → 0, Eni → En; or as Rg → ∞, Eni → In·Rg. There may be an ideal range of Rg that Et dominates; 
however, if En and/or In are considerably high for all Rg, Et may not be discerned [8]. Usually one cannot 
accurately measure the input noise to obtain (45) because of probe disturbances—the noise voltages can 
only be referred to by the output noise. After converting En and In to spectral densities, i.e., 

 and  and applying these to (45), the following using (33) determines SEn 
and SIn, 

 

 (a)    [V/√Hz]  and (b)    [A/√Hz]    (46) 

 
Figure 10 displays plots of (46a) and (46b) using the model parameters from figure 2. The SEn curve has a 
minimum at 0.035nV/√Hz from ~0.5Hz to ~1.3 kHz, whereas above 10Hz, SIn is flat at 4.075pA/√Hz. 

 Now with the intrinsic noise sources identified, (36) is modified by procedures (46a) and (46b), 
 
        (47) 
 
With decade Rg values, equation (47) is plotted in figure 11 using the model parameters. One can readily 
notice the difference between this family of curves and those of figure 7: the spectral density values on 
the right side of the graph are equal to the St values listed in table 1—all now have 0% error! However, 
each curve grows unbounded for f < 0.1Hz in figure 11—this is because SIn is approximated, losing 
accuracy as f → 0. 
 
3.4.  Closer look at equivalent intrinsic noise sources, En and In 
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Starting with (46a), Sni is the ratio of (35) and (11), i.e., Sno/A. Since (35) contains (34), after setting 

Rg = 0, this reduces to SEn, the equivalent input noise voltage spectral density,  
 

   (48) 

       
From (46b) we have the same ratio, Sno/A, but it is divided by Rg. In the limit as Rg → ∞, we obtain the 
equivalent input noise current spectral density,  
 

     (49) 

 
As functions of RL, (48) and (49) reveal that the load can considerably affect the spectral distribution 

of En and In, as seen in figures 12(a) and 12(b). The dotted flat line at the bottom of figure 12(a) is the 
“ideal” SEn in the limit of (48) as RL → ∞ and the diagonal line in figure 12(b) is the “ideal” SIn in the 
limit of (49) as RL → ∞. It is evident that the loading effect on the input noises must considered when 
selecting the passband. As a rule derived from the graph—and practice, higher values of RL result in 
lower input-related noise content in the interval Δf.  

Given Rg and RL, note that SEn and SIn are minimum within a mid-range of frequencies in figures 10 
and 12. The SEn (min) is found by taking the square of (48) to derive an equivalent resistance. Setting the 
derivative to zero and solving leads to, 

 

      (50) 

 
Only the first two terms of (50) are usually significant—inserting them into equation (26) gives SEn. 
Typically, RL >> Rp

2, thus one can use  within the mid-range passband range to approximate 

SEn (min),  

     (51) 

 
The minimum spectral density from noise source In is found in the limit of (49) as f → ∞ as seen in 

figure 12(b). This leads to an equivalent resistance of, 

     (52) 

The approximated SIn (min) becomes, 

     (53) 

 
At the intersection of (49) and the ideal SIn in figure 12(b), (53) is reasonable close to (49) with less than 

−5% error for . At frequencies below this, one should use the ideal case of (49), 



 11 

, to determine the spot frequency spectral density (the noise content within a unit 

bandwidth centered at f). For our model parameters, REn ≈ 0.074Ω and SEn(min) ≈ 0.035nV/√Hz within 
~0.1Hz-1 kHz. Also, RIn ≈ 1 kΩ and SIn(min) ≈ 4.074 pA/√Hz  for  f  > 5.15  Hz. 
 
3.5.  Relationship between RTI and intrinsic noise sources in terms of frequency and source resistance. 
 

We now look graphically at the relationship between the RTI noise, Eni, and noise sources Et, En, and 
In as a function of frequency and Rg. After converting all to spectral density, (45) leads to, 
 
     (54) 

 
Using the model parameters, (54) is mapped as a function of frequency along with noise levels caused by 
sources Et, En, and In for Rg values of 8.6mΩ, 8.6Ω, and 8.6kΩ in figures 13(a), 13(b), and 13(c).  

In figure 13(a), as Rg → 0, the spectral density is Sni ≈ SEn for all f. Observe that in this situation St as 
well as SIn·Rg fall well below the SEn curve and also note that here as well as elsewhere SEn is independent 
of Rg. 

At Rg = Rn = 8.6Ω in figure 13(b), there are three regions in which to consider: i) f  <  fa: Sni ≈ SIn
.Rg, 

ii) fa  ≥  f  ≥  fb:  Sni ≈ St, and iii) f > fb: Sni ≈ SEn. Frequencies fa and fb locate the points where St intersect 
SIn·Rg and SEn, respectively; thus by setting the product of (49) and Rn then (48) equal to  
and solving both for ω results in, 
 

 (a)  and  (b)      (55) 

Using the model parameters, fa = 0.48 Hz and fb = 42 kHz. Both SEn and SIn contributions are well below St 
such that one can state Sni = St with little error. As will be shown later, this Rg value is Rn, the optimum 
source resistance in the frequency span fa to fb. Also note in figure 13(b) that the optimum frequency 
occurs when SEn = SIn·Rg. This is denoted by fn and is equal to the geometric center frequency, 

—in our example, fn = 142 Hz. 
Finally, in figure 13(c), at Rg = 8.6kΩ, because of Rg

2 in (54), the SIn·Rg term increases faster than St 
for increasing Rg, making In the dominant noise source such that Sni ≈ SIn·Rg for all f. 

Changing the abscissa in figure 13(b) to source resistance Rg and setting the operating frequency to fn 
= 142 Hz, the optimal Rg values are depicted in figure 14; there are again three regions of dominance to 
consider: SEn at low values of Rg, SIn·Rg at high values of Rg, and St in the middle [8]. Choosing the same 
intersections from above, these points coincide with REn in (50) for the lower limit of Rg and with RIn in 
(53) for the upper limit. Rn also coincides with the geometric center of the lower and upper limit values, 

, a point that coincides with the intersection of SEn and SIn·Rg. The useful source resistance 
in figure 14 is 0.074Ω ≤ Rg ≤ 1kΩ at fn = 142 Hz. 

 
3.6. Optimum noise resistance of low-noise transformer 
 

  Setting Rg = Rn (or as close as possible) is the concept of noise matching and this results in the least 
possible overall noise power making the optimum noise resistance of much interest. Since Rn occurs at the 
intersection of SEn and SIn·Rg, then Rn = SEn/SIn = En/In. Substituting in (48) and (49) here leads to Rn as a 
function of load resistance RL and frequency—note that it does not depend on T, 
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     (56) 

 
Looking back at figures 12(a) and 12(b), though not influenced by Rg, Rn is dependent on RL. Using 

the model parameters, figure 15 maps (56) for various load resistances. The curves reflect the input source 
resistance that ensures the least noise at a given frequency. As expected, Rn increases with RL, but also the 
plateau shifts right to a higher fn as well as having wider and higher plateau frequency regimes. If RL is 
removed, Rn is a diagonal line in log-log scale throughout the spectrum—then there is not a unique 
optimum frequency point. There is the appearance then that lower RL—hence lower Rn—is indicative of 
lower noise; however, as shown later, this is not the case. 

Through the ratio of (51) and (53), with knowledge of the turns-ratio, winding resistances and load, 
the plateau value of Rn of a 1:n turns-ratio transformer can be approximated by, 

 

     (57) 

 
Inserting (57) into (56a) and (56b) under the radical gives the optimum frequency, . 
 
4. Noise Figure Analysis 
 
4.1. Noise factor definitions applied to low-noise transformer 
 

The study of noise generation in the above low-noise transformer model indicated that noise matching 
would reduce the intrinsic noise present in signal and source noise measurements; in addition, using the 
proper optimum frequency regime reduces the amount of noise observed. To utilize the previous analysis 
would always be tedious thus it is desirable to have a technique to obviate this. From literature, there is a 
figure of merit known as the noise factor that in graph form resolves the optimum noise performance by 
inspection [11,13]. According to IEEE: the noise factor of a two-port device is the ratio of the available 
output noise power per unit bandwidth to the portion of that noise caused by the actual source connected 
to the input terminals of the device, measured at the standard temperature of 290K [11]. In equation 
form, this would read [8], 
 

  
 

Put into familiar terms, since this refers to available power, figure 1(b) is examined in a conjugate 
matched condition: . Letting Pnoa be the total available noise power at the output and Ptoa be the 
portion at the output due to Et, (19b) is used to show that the ratio of the available powers at the input is 
identical to F, 

     (58) 

 
where Pnia and Pta are the available powers of the RTI noise and that due to Re(Zg), respectively. If we 
replace Vg in (15c) with Eni and use (24) to define Et, (58) develops into, 
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     (59) 

 
Incorporating (45) into (59) for Eni yields the usual expression seen for the noise factor [3,12], 
 

     (60) 

 
Equation (60) covers both frequency and source resistance and it demarcates between intrinsic (En and In) 
and thermal (Et) noise sources; moreover, it reveals that F – 1 is the ratio of intrinsic and source noise 
powers. 

Primarily F compares the noise of different systems and does not necessarily indicate optimum noise 
performance; however, the noise factor is useful in that it not only indicates how close one is to the ideal 
noiseless network but also the degree that the actual network adds to the noise already present [8]. To aid 
us, the noise factor can be converted into decibels, , and called the noise figure. In this 
form, an ideal network yields NF = 0 dB. At NF = 10 dB, the noise power due to En and/or In are 10 times 
that of Et, at NF = 20 dB it is 100 times, and so on. At NF = 3dB, source and intrinsic noise levels are 
equal and, from an engineering point of view, it is futile to make measurements for NF > 3 dB [3]. In 
practice, the nominal optimal performance is found at 0.5dB ≤ NF  ≤ 3dB. 

A signal-to-noise (SNR) aspect of F is found by multiplying both sides of (60) by the input signal 
power Vg

2 and power gain A2 [3,13], 
     (61) 

 
Hence, F measures the decrease in SNR through the network. At NF = 3 dB, SNRout is one-half of SNRin, 
and at NF = 0.5 dB, SNRout is 89.3% of the SNRin. 

The advantage of F is the ability to display it as a contour map. With constant RL, multiplying both 
sides of (60) by Δf allows the spectral densities of (46a) and (46b) or (48) and (49) to define F as a 
function of frequency and source resistance, 

 

     (62) 

 
where, . Based on the transformer model parameters, figure 16 depicts a contour 
map of the noise figure of a 1:1000 turns-ratio transformer for RL = 1GΩ. The contours are essentially the 
loci of points of constant NF as a function of source resistance and operating frequency [7]. Ideally, one 
keeps the source resistance and frequency selections inside the 3dB contour. The center point of the 
contour map, a local minimum, agrees with the above calculations for the optimum noise resistance and 
frequency, (Rn = 8.6Ω and fn = 142Hz). The NF map presented here is model-based in that higher-order 
elements are neglected and it does not account for domain-fluctuations of the core [7], 1/f noise, etc. NF 
contour maps are often derived experimentally, (cf. Ref. [4]); however, figure 16 is adequate for tutorial 
purposes. 

To demonstrate the utility of the NF map, consider a 10 Hz, 1kΩ source resistance connected to the 
transformer primary input. At these values, several facts can be deduced in figure 16 at, say, NF ≈ 10 dB: 
the intrinsic noise power swamps the source noise power by a factor of 10 (in voltage, by √10), the RTI 
noise is = 12.7nV/√Hz, and the SNR throughput is reduced by 10. The map indicates that, 
for example, to accurately measure Et noise at10Hz, the source resistance must be reduced by a factor of 
10 to meet noise-matched conditions. 

This merits some words though: Noise matching is not power or impedance matching—yet they can 
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coincide. There is not a direct relationship between Rn and the input impedance Zp in noise matching as in 
power matching [3]. Adding resistance in series (or in parallel) to increase (or decrease) the source 
resistance only introduces another thermal noise source making the situation worse. In all cases, the 
source resistance should be close as possible to Rn. 

To optimize noise matching, taking the derivative of (60) with respect to Rg and setting it to zero 
obtaining  leads to, again, the optimum noise resistance, . Substitution into 

(60) results in the minimum noise factor, 
     (63) 

 
After converting to SEn and SIn via (46a) and (46b)—or (48) and (49), Fmin can be expressed as, 
 

      (64) 

 
Note that Fmin is indirectly affected by Rg since it is subsumed under noise-matching conditions. With our 
model parameters, (64) is plotted in figure 17 along with Rn for RL = 1GΩ. NF(min) is minimum in the 
same frequency regime as the Rn plateau. For instance, at fn = 142Hz and Rn = 8.56Ω, NFmin = 0.074dB, 
the thermal noise generated by Rg = Rn is Et = 0.377nV/√Hz, and the RTI noise is Eni = 0.381nV/√Hz. 
Both intrinsic noise sources are minimum and together make r.m.s. noise voltage, 

= 0.0496nV/√Hz. The factor  appears because En = In·Rg 
when noise-matched. 

Since Fmin varies with RL according to (64), SEn, SIn and Rn are written as functions of both frequency 
and load resistance. Figure 18 plots (63) using the model parameters. The family of curves reveals that 
with noise-matched conditions at all frequencies, Fmin decreases markedly with increasing RL. Obviously, 
larger RL has an advantage in bandwidth below the 3dB line; but on the other hand, driving down Rn by 
way of a lower RL reduces the optimum frequency. At the minimum of each curve, the optimum 
frequency is determined by the geometric center, . 

Another way to look at F is to bring out an order of En, In, and Rg each in (60) and incorporate Fmin of 

(63) and  to have, 

     (65) 

 
where Rg ≠ 0 [8]. With the presence of Fmin, (65) gives F at fn.  Substituting (64) into (65) and treating SEn 
and SIn strictly as functions of RL leads to, 
 

     (66) 

 
F is mapped using the ratio Rg/Rn in (66) at different RL values in figure 19, where the values of Rn and fn 
are also dependent on RL. Because of fn, the minimum points (Rg/Rn = 1) are equal to the Fmin. 

The values of Rg in which F intersects the 3 dB line in figure 19 are two important points to 
determine. Setting F = 2 in (65) and rearranging gives a quadratic relationship between parameters Rg, Rn, 

and Fmin: . The solutions of this are the intersection points, which after 

multiplying by Rn give the inequality statement, 
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     (67) 

 
Thus by (67) Rg is kept between the two boundaries, the source noise is equal to or greater than the 
intrinsic noise. 

In conclusion, looking back at figures 12(a) and 12(b), although SEn is affected by RL, SEn (min) is not; 
but SIn (min) does change significantly with RL. However, when Rg = Rn within the plateau interval about fn, 
the product of (53) and (57) gives (51)—not a function of RL; therefore, SIn

2·Rn
2 = SEn

2 is constant. In 
short, there seems to be no benefit of a large RL other than the broader curves under the 3dB line. The 
apparent advantage of increasing RL to decrease Fmin is offset by an increase of the thermal noise of Rg, 
since it must increase to match Rn anyway.  
 
4.2. Approximations of noise factor in low-noise transformer 
 

We now approximate the above work for the mid-range passband about fn. We start by substituting 
(51) and (53) into (45) to give the RTI noise power expression in r.m.s., 

 

     (68) 

 
a quadratic equation in Rg scaled by 4·kB·T·Δf. On the other hand, at fn, we can substitute (51) and (53) 
into (64) to obtain the approximation, 

     (69) 

 
Inserting this and (57) into (65) leads to the same result as dividing (68) by Et

2 from (25), 
 

      (70) 

 
Or for large turns-ratio and low source resistance, since usually RL >> n2·Rg one can approximate with 

simply: . 

 
4.3. Noise factor of low-noise transformer system with source at different temperature 

 
Everything so far has involved the source resistance at the same temperature as the transformer, but 

consider now the source at a different temperature. F, then, has to be reworked in order to accommodate 
two temperatures: T (now reserved for Rg) and Ta (reserved for the ambient temperature). Modifying SEn 
and SIn in (48) and (49), as well as St of (26), allows (62) to be treated as an expression that accounts for 
all variables, 

     (71) 

 
Equation (71) has been relabeled to Fx to distinguish it from F of equation (62), which is at ambient 
temperature Ta. 

To construct a 2D NF map of (71), three parameters are set constant: Ta = 290K, ambient (room) 
temperature; RL = 1GΩ, the load; and, assuming that the passband frequency shifts with Rg such that it 
straddles fn, we use approximations (51) and (53) to reduce (71) to an expression that relates it to (70), 
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     (72) 

 
Converted into a noise figure, (72) is plotted in figure 20. With the same constraints, applying (51) and 
(53) to (64) leads to, 
       (73) 

 
where Fmin − 1 is taken from (69). Note that figure 20 indicates that the best performance is achieved 
when the choices of Rg and T satisfy the contours above 3dB. 

A thermistor-transformer example is now presented in which Rg and its temperature T are the only 
variables, i.e., the transformer temperature, Ta = 290K, remains constant. Using the model parameters, the 
results are placed into table 2. Included with the variables, Fx from (72) and Fmin x from (73) are also 
shown. The source spectral density St is given and, after rearranging (71), the RTI spectral density, Sni x, 
and the SEn and SIn contributions, SA x, are also given. At T = Ta in table 2 (1st row), the temperatures 
cancel in (72), which, after making Rg = 30Ω, (62) gives the noise factor. The 2nd row sets Rg = 3Ω at 
77K, where the noise factors are well below 2 with a large difference between St and SAx. The last row 
sets Rg = 0.3Ω at 40K and shows that the noise factor go up as well as the relative difference between St 
and Snix; the performance becomes worse because Rg << Rn. 

1/Fx gives the fractional presence of St in the total noise Sni. At T = 290K and Rg = 30Ω, 98% of the 
total noise is source or Rg noise; at T = 77K and Rg = 3Ω, it is 90.6% of the total noise; and, for T = 40K 
and Rg = 0.3Ω, 35.8% of the total is Rg noise. 

 
5. DC-blocking Capacitor and Noise Measurement 
 

Some cases require a d.c. blocking capacitor between the source and transformer primary to prevent 
core magnetization due to bias current; this, however, may have an undesirable effect on the transfer 
function and noise level. The insertion of a d.c. blocking capacitor into figure 9 is redrawn in figure 21. 
The capacitor in series with Rg forms input impedance Zg(ω) = Rg – jXg(ω), where Xg(ω) = 1/(ωCg) is the 
reactance. The substitution of Rg for impedance Zg in (45) yields, 

 
     (74) 
 
The additional term signifies extra noise voltage across the capacitor due to In; moreover, it is 

frequency dependent due to both In and Xg. This noise has a distinct 1/f distribution (not excess noise) and 
its contribution is inversely proportional to Cg.  

To lower the cutoff frequency as well as reduce the noise contribution, use as large of Cg as possible. 
With the above transformer model’s unusual low cutoff frequency, finding a large value capacitor that 
does not introduce other unwanted factors is difficult. Electrolytic capacitors, popular for large values, are 
known for both low accuracy and temperature stability [14]; however, they contribute noise due to 
leakage currents and should be avoided [12]. Double layer capacitors are currently a better choice: They 
have slightly better accuracy and stability and, with higher series resistance, the leakage is much less [14]. 

Consider, say, Cg = 15mF and its effect on the transfer function. Inserting into 
(8) produces figure 22, where only frequencies below 1kHz are shown—higher frequency results are 
similar to Figure 2(a). The plots for Rg < 10Ω reveal peaking centered at  ≈ 3.15Hz and 

cutoff frequencies insensitive to Rg, e.g., fL ≈ 2Hz. By comparison, the cutoff frequencies in figure 22 are 
relatively the same as figure 2(a) for Rg ≥ 10Ω. Also, the curve’s ENB is quite different from those of 
figure 2(a), e.g., at f < 1kHz, the ENB is larger for Rg ≤ 1Ω plots. 

Substituting Rg + 1/s·Cg into Zg(s) in (5b) with RL in parallel gives Ro, which when placed into (35) 
yields the output spectral densities of figure 23(a). In contrast to figure 6(a), there is obvious peaking of 
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the output noise. Divided then by the corresponding amplitudes (figure 22), the family input spectral 
density curves are given in figure 23(b). Comparing figure 23(b) to figure 6(b), the converging noise 
values are larger as f → 0 for all Rg. This is due to the noise across Xg and can be compensated by 
applying (36) to figure 23(b) for results similar to figure 7. 

Applying the techniques given in (46a) and (46b) is tantamount to either shorting the left side of Cg in 
figure 21 to ground to derive SEn or setting Rg to a large value (e.g. 1GΩ) to determine SIn. Afterwards, 
applying (47) yields results similar to figure 11. Using SEn and SIn with (74) and modifying (62) to include 
Cg leads to, 

 

      (75) 

 
From (75), a NF map for our transformer model with Cg = 2.3F along with the inset parameters from 
figure 2 is displayed in figure 24. Compared to figure 16, the contours on the lower left half of the map 
shift right in response to the extra capacitance. This is expected since the bandwidth is narrower and there 
is extra noise power due to Xg. Despite this, Rn and fn undergo very little change in this example. 
 
6. The Amplifier Chain and Noise 
 
6.1. Secondary resistance without load  
 
   The cascade arrangement of the low-noise transformer and amplifiers and/or meter devices is 
examined in this section. These extra devices generate additional noise that propagates through the 
system; hence, their noise resistances should be matched—or closely matched. In most cases though, the 
applied or input noise is already greater than the device’s intrinsic noise by a factor of √2. Ideally, all 
connected stages—whether a transformer or an amplifier/meter—should operate at noise resistance or Rn 
input conditions and its output resistance should be matched to the following stage’s Rn.  

With that said, before examining other devices, we isolate first the transformer’s output resistance 
member. Removing RL and evaluating (5b) gives, 

 

     (76) 

 
Figure 25 plots (76) for decade values of Rg using the model parameters. Notice that Ros increases whereas 
fL shifts to the right with larger Rg; otherwise, the family of curves is flat in the optimum frequency 
regime and approximated by,  
 
     (77) 
 
Equations (76) or (77) are useful for noise matching whereas equation (34), by using RL, derives the total 
resistance Ro—eventually, both sets of equations use (35) to obtain Sno. 

Although meant for transformers, figure 9 serves as a schematic as well for a low-noise amplifier 
(LNA) or a meter, such as a spectrum analyzer (S/A).  The transformer, LNA, and S/A thus use similar 
equations: (45) for Eni; (46a) and (46b) for SEn and SIn; and (62), (64), and (67) for F, F(min) and the Rg 
boundaries, respectively. For a LNA or S/A, Rg in figure 9 is substituted by the preceding stage drive 
resistance, e.g., the transformer’s output resistance. In the same way, the load resistance, RL, of a 
transformer can be the input resistance member of a BJT base or FET gate impedance. 
 
6.2. Cascade power gain, noise power, and noise factors 
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When comparing systems it is more convenient to evaluate the system gain and noise factor of the 
entire chain as a single network rather than in piecemeal. Because the individual noise powers are 
uncorrelated, the derivation of the system noise factor is not as straightforward as the system signal power 
gain. H. T. Friis, in 1944, was the first to describe a method that evaluates a power transfer system in 
terms of individual power gains and noise factors [13]. The method also accounts for terminal impedance 
mismatch; yet the load impedance and input/output resistance thermal noise are of no consequence [8,13].  

Figure 26 presents a cascaded power transfer system consisting of three stages: A low-noise 
transformer of gain A1 and noise factor F1; a LNA of A2 and F2; and a S/A of A3 and F3. Also shown are 
the intrinsic noise voltage sources, , of each kth stage that through (45) are represented by 

 in which  is the previous stage’s output resistance. The available power 
gain, Ga, is a function of the network z-parameters and source impedance; yet, looking at (19b), Ga is 
independent of the load. Combining the magnitude-square of (6b) into (19b) simplifies Ga for each kth 
stage to, 

       (78) 

 
where Ak is the voltage gain and  is the output resistance of the kth stage, respectively. For k = 1, 

 and , according to (77). Evaluating (78) for the transformer and the LNA in figure 26 
gives the following results:  
 

 (a)   and  (b)      (79) 

 
where (79a) is the mid-band approximation of (21b) and though not shown it is a function of Rg. In (79b) 

, where ALNA is the LNA voltage gain setting; the optimal case, , is 

assumed for the right-most approximation in (79b). For the S/A, the gain is simply set to unity or . 
The total power gain of any measurement system with N gain/attenuator elements is the product of 

the individual power gains, 

     (80) 

 
The application of (80) to equations (79a), (79b), and the S/A gain results in the mid-band approximation 
of the system in figure 26, 

     (81) 

 
Setting Rg constant in figure 26 as well as removing Et and  noise sources, the input and output 

available powers are simply  and , respectively. Now if Et is reinstated and Pg = 
0, (80) gives the power transfer of external noise Pt from (23) such that, . Figure 27 details 
the total power transfer through figure 26 after reestablishing noise sources . With Fk as the 
individual noise factors, the intrinsic noise power at each kth stage is, 

 
     (82) 
 
With all parameters constant, (82) depends on resistance only through Fk. Setting signal Pg = 0 in figure 
27, the individual output powers are , , and  

, where kB·T·Δf is the noise power of each source resistance. 
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Expanding Pno results in the total noise power output: 
 

     (83) 

 
From (58) with , the system noise factor is the enclosed terms in (83) and can be 

further generalized as, 
 

     (84) 

 
Known as Friis’ formula, (84) is a canonical statement for N gain/attenuator elements in a power transfer 
system [8,13].  For an optimal system, typically only the first two terms are significant; however, the best 
performance is obtained when F1 has significantly more influence over the summation term in (84) [3,8]. 
 
6.3. SNR and conversion of cascade transformer/amplifier/meter system  

 
The system of figure 27 can be reduced to the simple power transfer network shown in figure 28. 

Three input ports represent the system intrinsic and source resistance noise powers with the bottom port 
for the signal power. Pout, the power transfer output, contains both the signal output power, Po = Pg·Gsys, 
and the output noise power now defined as, . Equations (82) and (84) furnish the system 
equivalent intrinsic noise power, 
     (85) 
 
Once Gsys, Fsys, and the system ENB are determined, (58) can be used to determine the SNR using the 
available power. Applying definitions SNRout = Po/Pno, SNRin = Pg/Pni, and the above work to (61) leads 
to, 

     (86) 

 
To maintain SNRout ≥ 1, ; signal Vg then must be greater than or equal to the system  
RTI noise voltage, 

     (87) 

 
We convert to spectral density by examining figure 29, it is similar to figure 9, except EnA replaces Eni 

and In·Rg and there is not a load impedance. Dividing (87) by √Δf gives the system noise voltage spectral 
density of the equivalent input noise source for a low noise transformer-driven system affected by Rg, 

 
     (88) 

 
Under the same conditions, since PnA of (85) is dependent on Rg via Fsys, the system intrinsic noise voltage 
source is, 
     (89) 

 
To obtain the thermal noise St of (26), if Asys and Fsys are known at Vg = 0, Asys is divided into 
measurement Sno yielding (88), i.e., Sni = Sno/Asys.  Rearranging for St then gives, 
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     (90) 

 
Strictly as a real-number process between zero and one, multiplying Sno over Asys by the conversion and 
correction factor in (90), , gives the noise voltage spectral density of the sensor. 
 
7.  Conclusion 

 
One of the underlying themes of this work has been the effect on a low-noise transformer due to 

variable input source or sensor resistance, Rg. Two concerns were: i) a transfer function highly dependent 
upon input/output impedances; the output impedance, however, is usually constant. And ii), noise 
characteristics are determined by source and load impedances; that is, the spectral density distribution is 
shaped by the transfer function and the magnitude levels depend on termination impedances. We 
discerned, also, between the two transfer functions: T(s), the network gain that is independent of Rg, and 
H(s), the system transfer function that is dependent on Rg. Then we demonstrated with H(s) that the lower 
frequency cutoff shifts with respect to the sensor or source resistance, Rg. 

Nyquist’s theorem was applied to acquire the low noise transformer’s output noise voltage spectral 
density; this divided by the gain gave the RTI noise voltage spectral density. It was demonstrated that the 
magnitude of the noise varies with Rg. Further calculations, where the Rg = 0Ω baseline was subtracted in 
quadrature from the Rg ≠ 0Ω curves, revealed that the noise magnitudes changed disproportional to Rg, 
indicative of intrinsic noises other than the input sensor noise. Two-port analysis defined intrinsic 
equivalent voltage and current noise sources, En and In, at the input, which when added in quadrature to 
the sensor thermal noise gave the correct expression for the RTI noise. The spectral densities for En and In 
are derived by zero/high resistance measurement techniques or by calculation. For post-processing, (47) 
and (27) can be utilized to derive the correct sensor r.m.s. noise, Et. Equation (54) was mapped at various 
Rg values to show the advantage of matching the source to Rn, the optimum noise resistance. The optimum 
frequency, fn, is the geometric center of endpoints where St = SEn = SIn·Rg —at the center point, Rg = Rn. 
Operating beyond the endpoints allows SEn or SIn·Rg to dominate St. We also looked at the nexus between 
Rn and RL; as a note, although not mentioned in above, for large RL, Rn is on the order of . 

The noise factor (and noise figure) absorbs a number of calculations into a single expression that is 
dependent upon source resistance and frequency. NF contour maps visually identify the optimal operating 
region, the area inside the 3dB contour. Although a figure of merit to compare different systems, there are 
other uses: one can derive RTI, source (sensor), and intrinsic noises, quantify SNR loss, determine noise-
matched conditions, state the range of Rg in which NF ≤ 3dB, and relate it to temperatures other than 
ambient. The latter was plotted as a sensor temperature vs. sensor resistance NF contour map where the 
optimal performance was the region above the 3dB line. Throughout this work, there was composite 
dependence of Fmin on RL, which implied that lower F values (and higher Rn) follow higher RL values. 

Dc blocking issues were also examined. An improper d.c. blocking capacitor value selection could 
place a resonant peak at or near a region of interest altering the measurement. It was shown that the effect 
on the NF reshaped the contours such that there was more intrinsic noise at lower frequencies. 
Conclusion: if a dc-blocking capacitor is needed, choose a reasonably large value. 

We concluded by reducing the multi-element gain system to a single element. Generalizing the power 
gain with the unloaded transfer function and the ratio of input/output resistances, an indexed power gain 
formula for each element was generated. The product of these separate power gains gave the system 
power gain. Each element’s intrinsic noise power was also used to derive the system’s noise power and 
noise factor, Fsys. The optimal Fsys is one in which the power gain of the first device far exceeds the 
following devices. Knowledge of Fsys provides a system noise and SNRout expression, a system r.m.s. 
noise expression that dictates the minimum signal voltage, and the system RTI and intrinsic noise spectral 
densities. From the latter two, an equation was introduced that converts and corrects data from the low-
noise transformer-driven system to give sensor noise without having to contend with complex values. 
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Figure 1:  

 
 
 
Figure 1. Schematic diagrams of (a) transformer and (b) the two-port z-parameter network of the 
transformer. 
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Figure 2: 
 

 
 
 
Figure 2. Family of 2nd-order approximations of (a) magnitude and (b) phase function, both functions of 
Rg and f for 1:1000 turns ratio, low-noise transformer using the inset element values as model parameters. 
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Figure 3: 
 
 a) b) 

 
 
 
Figure 3. (a) Change in fL with Rg and (b) sensitivity of fL to Rg, both based on the model parameters. 
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Figure 4:  
 

 
 
 
Figure 4. (a) Johnson noise voltage source circuit and (b) conjugate-matched closed circuit to measure 
Johnson noise voltage. 
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Figure 5:  

 
 
 
Figure 5. Source noise voltage generator applied to network with output connected to true-r.m.s. meter. 
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Figure 6:  
 

 

 
 
 
Figure 6. Family of spectral density curves for (a) output noise voltage and (b) RTI noise voltage using 
the model parameters. 
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Figure 7:  

 
 
 
Figure 7. Family of spectral density correction curves based on subtracting in quadrature the baseline RTI 
noise. However, the input source thermal noise is not accurately reflected. Used the model parameters.  
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Figure 8:  
 

 
 
 
Figure 8. (a) Two port noiseless network with extracted noise voltage sources place at each port and (b) 
equivalent two port noiseless network with noise voltage/current sources placed the (primary) input. 
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Figure 9: 

 
 
 
 
Figure 9. Equivalent noise sources En and In with input signal and noise source Vg and Et. 
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Figure 10: 

 
 
 
Figure 10. Equivalent noise voltage, En, and current, In, spectral densities based on model parameters. 
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Figure 11: 

 
 
 
Figure 11. RTI spectral density, Sni, corrected with SEn and SIn to give true source resistance noise, St.  
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Figure 12: 

 

 
 
 
Figure 12. Examples of spectral densities from noise source generators (a) En and (b) In, both as functions 
of load resistance RL.  Results based on model parameters. 
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Figure 13: 

 

 

 
 
Figure 13. Sni, St, SEn, and SIn·Rg vs Rg at (a) 8.6mΩ, (b) 8.6Ω, and (c) 8.6kΩ using the model parameters. 
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Figure 14: 
 

 
 

 
Figure 14. Sni, St, SEn, and SIn·Rg vs Rg at optimum frequency 142Hz using the model parameters. 
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Figure 15:  

 
 
 
Figure 15. Noise resistance, Rn, mapped at various load resistances, RL, using the model parameters. 
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Figure 16: 
 

 
 
Figure 16. Example low noise transformer NF contour map with turns-ratio n = 1000 and load of RL = 
1GΩ. Based on model parameters of inset in figure 2. 
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Figure 17: 
 

 

 
 
 
Figure 17. Mapping of NF(min), and Rn, for RL = 1GΩ based the model parameters. 
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Figure 18: 
 

 
 
 
Figure 18. Mapping of minimum noise figure (NF(min)) of transformer model using the model parameters 
at various load resistances (RL) values. 
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Figure 19: 
 

 
 
 
Figure 19. Noise figure (NF) versus Rg/Rn of transformer model using the model parameters at various 
load resistance (RL) values. 
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Figure 20: 
 
 

 
 
 
Figure 20. NFx vs. Rg and source temperature T with transformer fixed at Ta = 290K and RL = 1GΩ. 
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Figure 21: 
 

 
 
 
Figure 21. Equivalent input noise source circuit with capacitor in series (see figure 9). 
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Figure 22: 
 

 
 
 
Figure 22. Amplitude density of transformer model with a 15mF dc-blocking capacitor at primary. 
Results based the model parameters of figure 2. 



 44 

Figure 23:  
 

 
 

 
 
 
Figure 23. (a) Output and (b) input noise spectral densities of low noise transformer model with a 15mF 
dc-blocking capacitor at the transformer’s primary terminals. Results based on the model parameters. 
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Figure 24: 
 

 
 
 
 
Figure 24. Noise figure contour map for n = 1000, low noise transformer model with dc block 
capacitance Cg = 2.3F and load resistance RL = 1GΩ. Based on model parameters from inset in figure 2. 
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Figure 25: 
 

 
 
 
Figure 25. Resistance member (Ros) of the transformer output impedance using the model parameters. 
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Figure 26: 
 

 
 
 
Figure 26. Measurement system of cascaded transformer, low noise amplifier, and spectrum analyzer 
networks with associated noise sources. LNA drive resistance is typically = 50Ω or 600Ω 
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Figure 27: 
 

 
 
 
Figure 27. Sum-product block diagram of power transfer through a system network. 
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Figure 28: 
 

 
 
 
 
Figure 28. Block diagram of system network in terms of signal, source noise, and intrinsic noise powers. 
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  Figure 29:   
 

 
 
 
 
Figure 29. Diagram of a measurement system network in terms of signal- and noise-related voltages. 
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Table 1. Corrected RTI spectral densities vs. actual thermal noise spectral density, St, from figure 7. 

 
 

 Rg      Sv(100 Hz)  St    error (%) 
0.1 Ω 0.0407 nV/√Hz 0.0407 nV/√Hz 0.012 % 

1 Ω 0.1288 nV/√Hz 0.1287 nV/√Hz 0.058 % 
10 Ω 0.4091 nV/√Hz 0.407 nV/√Hz 0.508 % 

100 Ω 1.35 nV/√Hz 1.287 nV/√Hz 4.91 % 
1 kΩ 5.763 nV/√Hz 4.070 nV/√Hz 41.6 % 
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Table 2: 
 
Table 2. Noise factors and noise spectral densities for various R and T values at source generator 
temperature Ta = 290K and load resistance RL = 1GΩ—the operating frequency is f = 100 Hz. 

 
 
 
 
 
 
 
 
 

   T Rg Fmin x, [Eq. (73)] Fx, [Eq. (72)] St   
Ta 30 Ω 1.017 (0.07dB) 1.032 (0.14dB) 0.693 nV/√Hz 0.704 nV/√Hz 0.125 nV/√Hz 

77K 3 Ω 1.065 (0.27dB) 1.104 (0.43dB) 0.113 nV/√Hz 0.119 nV/√Hz 0.0365 nV/√Hz 
40K 0.3 Ω 1.125 (0.51dB) 2.791 (4.46dB) 0.026 nV/√Hz 0.043 nV/√Hz 0.034 nV/√Hz 


