17 research outputs found

    The Iso2k database: a global compilation of paleo-ÎŽ18O and ÎŽ2H records to aid understanding of common era climate

    Get PDF
    Reconstructions of global hydroclimate during the Common Era (CE; the past ~2,000 years) are important for providing context for current and future global environmental change. Stable isotope ratios in water are quantitative indicators of hydroclimate on regional to global scales, and these signals are encoded in a wide range of natural geologic archives. Here we present the Iso2k database, a global compilation of previously published datasets from a variety of natural archives that record the stable oxygen (ÎŽ18O) or hydrogen (ÎŽÂČH) isotopic composition of environmental waters, which reflect hydroclimate changes over the CE. The Iso2k database contains 756 isotope records from the terrestrial and marine realms, including: glacier and ground ice (205); speleothems (68); corals, sclerosponges, and mollusks (145); wood (81); lake sediments and other terrestrial sediments (e.g., loess) (158); and marine sediments (99). Individual datasets have temporal resolutions ranging from sub-annual to centennial, and include chronological data where available. A fundamental feature of the database is its comprehensive metadata, which will assist both experts and non-experts in the interpretation of each record and in data synthesis. Key metadata fields have standardized vocabularies to facilitate comparisons across diverse archives and with climate model simulated fields. This is the first global-scale collection of water isotope proxy records from multiple types of geological and biological archives. It is suitable for evaluating hydroclimate processes through time and space using large-scale synthesis, model-data intercomparison and (paleo)data assimilation. The Iso2k database is available for download at: https://doi.org/10.25921/57j8-vs18 (Konecky and McKay, 2020) and is also accessible via through the NOAA/WDS Paleo Data landing page: https://www.ncdc.noaa.gov/paleo/study/29593

    Thermal Performance Evaluation of Two Thermal Energy Storage Tank Design Concepts for Use with a Solid Particle Receiver-Based Solar Power Tower

    No full text
    This paper presents the results of an extensive study of two thermal energy storage (TES) systems. The goal of the research is to make solar energy cost-competitive with other forms of electricity. A small-scale TES system was first built. The inner to outer layers were made of firebrick (FB), autoclaved aerated concrete (AAC) and reinforced concrete brick (CB). The experiments were conducted at temperatures of up to 1000 °C for sustained periods of time. AAC was found to be prone to cracking at temperatures exceeding 900 °C; as a result, AAC was eliminated from the second TES system. The second, larger-scale TES system was subsequently built of multiple layers of readily available materials, namely, insulating firebrick (IFB), perlite concrete (PC), expansion joint (EJ), and CB. All of the surfaces were instrumented with thermocouples to estimate the heat loss from the system. The temperature was maintained at approximately 800 °C to approximate steady state conditions closely. The steady state heat loss was determined to be approximately 4.4% for a day. The results indicate that high-temperature TES systems can be constructed of readily available materials while meeting the heat loss requirements for a falling particle receiver system, thereby contributing to reducing the overall cost of concentrating solar power systems

    A Humanized Stromal Bed Is Required for Engraftment of Isolated Human Primary Squamous Cell Carcinoma Cells in Immunocompromised Mice

    No full text
    Epithelial cancers are the most common malignancies and the greatest cause of cancer mortality worldwide. The incidence of keratinocyte-derived (non-melanoma) skin cancers is increasing rapidly. Despite access to abundant tumor tissue and ease of observation, acceptance of non-melanoma skin cancers as model carcinomas has been hindered by the lack of a reliable xenograft model. Herein we describe conditions that allow routine xeno-engraftment of primary human squamous cell carcinoma (SCCa) cells. Tumor development required creation of an appropriate stromal bed before xenografting tumor tissue onto the backs of athymic nude mice. We also demonstrate that the stromal bed must be “humanized” if primary human SCCa is to be propagated from cell suspensions. SCCa xenografts recapitulated the histological grade and phenotype of the original tumors with considerable fidelity, even after serial passage, irrespective of the histological grade of the primary human SCCa. This model, which to our knowledge is previously unreported, can be used for drug testing, as well as for studies that are relevant to the biology of primary human SCCa and other epithelial cancers

    Ancestral patterns of recessive dystrophic epidermolysis bullosa mutations in Hispanic populations suggest sephardic ancestry

    No full text
    Recessive Dystrophic Epidermolysis Bullosa (RDEB), is a rare genodermatosis caused by mutations in the gene coding for type VII collagen (COL7A1) (Hovnanian et al., 1994). More than 800 different pathogenic mutations in COL7A1 have been described to date (Mittapalli et al., 2019), however, the ancestral origins of many of these mutations have not been precisely identified. In this study, thirty-two RDEB patient samples from the Southwestern United States, Mexico, Chile, and Colombia carrying common mutations in the COL7A1 gene were investigated to determine the origins of these mutations and the extent to which shared ancestry contributes to disease prevalence. The results demonstrate both shared European and American origins of RDEB mutations in distinct populations in the Americas and suggest the influence of Sephardic ancestry in at least some RDEB mutations of European origins. Knowledge of ancestry and relatedness amongst RDEB patient populations will be crucial for the development of future clinical trials and the advancement of novel therapeutics

    Globally coherent water cycle response to temperature change during the past two millennia

    Get PDF
    The response of the global water cycle to changes in global surface temperature remains an outstanding question in future climate projections and in past climate reconstructions. The stable hydrogen and oxygen isotope compositions of precipitation (ήprecip), meteoric water (ήMW) and seawater (ήSW) integrate processes from microphysical to global scales and thus are uniquely positioned to track global hydroclimate variations. Here we evaluate global hydroclimate during the past 2,000 years using a globally distributed compilation of proxies for ήprecip, ήMW and ήSW. We show that global mean surface temperature exerted a coherent influence on global ήprecip and ήMW throughout the past two millennia, driven by global ocean evaporation and condensation processes, with lower values during the Little Ice Age (1450–1850) and higher values after the onset of anthropogenic warming (~1850). The Pacific Walker Circulation is a predominant source of regional variability, particularly since 1850. Our results demonstrate rapid adjustments in global precipitation and atmospheric circulation patterns—within decades—as the planet warms and cools
    corecore