443 research outputs found

    Running Simultaneous Kepler Sessions for the Parallelization of Parametric Scans and Optimization Studies Applied to Complex Workflows

    Get PDF
    AbstractIn this paper we present an approach taken to run multiple Kepler sessions at the same time. This kind of execution is one of the requirements for Integrated Tokamak Modelling platform developed by the Nuclear Fusion community within the context of EUROFusion project[2]. The platform is unique and original: it entails the development of a comprehensive and completely generic tokamak simulator including both the physics and the machine, which can be applied for any fusion device. All components are linked inside workflows. This approach allows complex coupling of various algorithms while at the same time provides consistency. Workflows are composed of Kepler and Ptolemy II elements as well as set of the native libraries written in various languages (Fortran, C, C++). In addition to that, there are Python based components that are used for visualization of results as well as for pre/post processing. At the bottom of all these components there is a database layer that may vary between software releases, and require different version of access libraries. The community is using shared virtual research environment to prepare and execute workflows. All these constraints make running multiple Kepler sessions really challenging. However, ability to run numerous sessions in parallel is a must - to reduce computation time and to make it possible to run released codes while working with new software at the same time. In this paper we present our approach to solve this issue and examples that show its correctness

    A review of protocols for Fiducial Reference Measurements of downwelling irradiance for the validation of satellite remote sensing data over water

    Get PDF
    This paper reviews the state of the art of protocols for the measurement of downwelling irradiance in the context of Fiducial Reference Measurements (FRM) of water reflectance for satellite validation. The measurement of water reflectance requires the measurement of water-leaving radiance and downwelling irradiance just above water. For the latter, there are four generic families of method, using: (1) an above-water upward-pointing irradiance sensor; (2) an above-water downward-pointing radiance sensor and a reflective plaque; (3) a Sun-pointing radiance sensor (sunphotometer); or (4) an underwater upward-pointing irradiance sensor deployed at different depths. Each method-except for the fourth, which is considered obsolete for the measurement of above-water downwelling irradiance-is described generically in the FRM context with reference to the measurement equation, documented implementations, and the intra-method diversity of deployment platform and practice. Ideal measurement conditions are stated, practical recommendations are provided on best practice, and guidelines for estimating the measurement uncertainty are provided for each protocol-related component of the measurement uncertainty budget. The state of the art for the measurement of downwelling irradiance is summarized, future perspectives are outlined, and key debates such as the use of reflectance plaques with calibrated or uncalibrated radiometers are presented. This review is based on the practice and studies of the aquatic optics community and the validation of water reflectance, but is also relevant to land radiation monitoring and the validation of satellite-derived land surface reflectance

    Platelet-Associated Matrix Metalloproteinases Regulate Thrombus Formation and Exert Local Collagenolytic Activity

    Get PDF
    Objective Platelets are increasingly implicated in processes beyond hemostasis and thrombosis, such as vascular remodeling. Members of the matrix metalloproteinase (MMP) family not only remodel the extracellular matrix but also modulate platelet function. Here, we made a systematic comparison of the roles of MMP family members in acute thrombus formation under flow conditions and assessed platelet-dependent collagenolytic activity over time. Approach and Results Pharmacological inhibition of MMP-1 or MMP-2 (human) or deficiency in MMP-2 (mouse) suppressed collagen-dependent platelet activation and thrombus formation under flow, whereas MMP-9 inhibition/deficiency stimulated these processes. The absence of MMP-3 was without effect. Interestingly, MMP-14 inhibition led to the formation of larger thrombi, which occurred independently of its capacity to activate MMP-2. Platelet thrombi exerted local collagenolytic activity capable of cleaving immobilized dye-quenched collagen and fibrillar collagen fibers within hours, with loss of the majority of the platelet adhesive properties of collagen as a consequence. This collagenolytic activity was redundantly mediated by platelet-associated MMP-1, MMP-2, MMP-9, and MMP-14 but occurred independently of platelet -granule release (Nbeal2(-/-) mice). The latter was in line with subcellular localization experiments, which indicated a granular distribution of MMP-1 and MMP-2 in platelets, distinct from -granules. Whereas MMP-9 protein could not be detected inside platelets, activated platelets did bind plasma-derived MMP-9 to their plasma membrane. Overall, platelet MMP activity was predominantly membrane-associated and influenced by platelet activation status. Conclusions Platelet-associated MMP-1, MMP-2, MMP-9, and MMP-14 differentially modulate acute thrombus formation and at later time points limit thrombus formation by exerting collagenolytic activity

    The integrated stress response is tumorigenic and constitutes a therapeutic liability in KRAS-driven lung cancer.

    Get PDF
    The integrated stress response (ISR) is an essential stress-support pathway increasingly recognized as a determinant of tumorigenesis. Here we demonstrate that ISR is pivotal in lung adenocarcinoma (LUAD) development, the most common histological type of lung cancer and a leading cause of cancer death worldwide. Increased phosphorylation of the translation initiation factor eIF2 (p-eIF2α), the focal point of ISR, is related to invasiveness, increased growth, and poor outcome in 928 LUAD patients. Dissection of ISR mechanisms in KRAS-driven lung tumorigenesis in mice demonstrated that p-eIF2α causes the translational repression of dual specificity phosphatase 6 (DUSP6), resulting in increased phosphorylation of the extracellular signal-regulated kinase (p-ERK). Treatments with ISR inhibitors, including a memory-enhancing drug with limited toxicity, provides a suitable therapeutic option for KRAS-driven lung cancer insofar as they substantially reduce tumor growth and prolong mouse survival. Our data provide a rationale for the implementation of ISR-based regimens in LUAD treatment

    Anti-metastatic Inhibitors of Lysyl Oxidase (LOX): Design and Structure-Activity Relationships

    Get PDF
    Lysyl oxidase (LOX) is a secreted copper-dependent amine oxidase that crosslinks collagens and elastin in the extracellular matrix (ECM) and is a critical mediator of tumor growth and metastatic spread. LOX is a target for cancer therapy and thus the search for therapeutic agents against LOX has been widely sought. We report herein the medicinal chemistry discovery of a series of LOX inhibitors bearing an aminomethylenethiophene (AMT) scaffold. High throughput screening (HTS) provided the initial hits. Structure-activity relationship (SAR) studies led to the discovery of AMT inhibitors with sub-micromolar half maximal inhibitory concentrations (IC50) in a LOX enzyme activity assay. Further SAR optimisation yielded the orally bioavailable LOX inhibitor CCT365623 with good anti-LOX potency, selectivity, pharmacokinetic properties, as well as anti-metastatic efficacy

    Investigating the association between characteristics of local crisis care systems and service use in an English national survey

    Get PDF
    BACKGROUND: In England, a range of mental health crisis care models and approaches to organising crisis care systems have been implemented, but characteristics associated with their effectiveness are poorly understood. AIMS: To (a) develop a typology of catchment area mental health crisis care systems and (b) investigate how crisis care service models and system characteristics relate to psychiatric hospital admissions and detentions. METHOD: Crisis systems data were obtained from a 2019 English national survey. Latent class analyses were conducted to identify discernible typologies, and mixed-effects negative binomial regression models were fitted to explore associations between crisis care models and admissions and detention rates, obtained from nationally reported data. RESULTS: No clear typology of catchment area crisis care systems emerged. Regression models suggested that provision of a crisis telephone service within the local crisis system was associated with a 11.6% lower admissions rate and 15.3% lower detention rate. Provision of a crisis cafe was associated with a 7.8% lower admission rates. The provision of a crisis assessment team separate from the crisis resolution and home treatment service was associated with a 12.8% higher admission rate. CONCLUSIONS: The configuration of crisis care systems varies considerably in England, but we could not derive a typology that convincingly categorised crisis care systems. Our results suggest that a crisis phone line and a crisis cafe may be associated with lower admission rates. However, our findings suggest crisis assessment teams, separate from home treatment teams, may not be associated with reductions in admission and detentions

    Remodeling of Bone Marrow Hematopoietic Stem Cell Niches Promotes Myeloid Cell Expansion during Premature or Physiological Aging

    Get PDF
    Hematopoietic stem cells (HSCs) residing in the bone marrow (BM) accumulate during aging but are functionally impaired. However, the role of HSC-intrinsic and -extrinsic aging mechanisms remains debated. Megakaryocytes promote quiescence of neighboring HSCs. Nonetheless, whether megakaryocyte-HSC interactions change during pathological/natural aging is unclear. Premature aging in Hutchinson-Gilford progeria syndrome recapitulates physiological aging features, but whether these arise from altered stem or niche cells is unknown. Here, we show that the BM microenvironment promotes myelopoiesis in premature/physiological aging. During physiological aging, HSC-supporting niches decrease near bone but expand further from bone. Increased BM noradrenergic innervation promotes β2-adrenergic-receptor(AR)-interleukin-6-dependent megakaryopoiesis. Reduced β3-AR-Nos1 activity correlates with decreased endosteal niches and megakaryocyte apposition to sinusoids. However, chronic treatment of progeroid mice with β3-AR agonist decreases premature myeloid and HSC expansion and restores the proximal association of HSCs to megakaryocytes. Therefore, normal/premature aging of BM niches promotes myeloid expansion and can be improved by targeting the microenvironment.Y.-H.O. received fellowships from Alborada Scholar-ship (University of Cambridge), Trinity-Henry Barlow Scholarship (Universityof Cambridge), and R.O.C. Government Scholarship to Study Abroad (GSSA). A.G.G. received fellowships from the Ramon Areces Foundationand the LaCaixa Foundation. C.K. was supported by Marie Curie Career Inte-gration (H2020-MSCA-IF-2015-70841). S.M.-F. was supported by Red TerCel (ISCIII-Spanish Cell Therapy Network). V.A. is supported by grants from theSpanish Ministerio de Economıa,Industria y Competitividad (MEIC) with co-funding from the Fondo Europeo de Desarrollo Regional (FEDER, ‘‘Una manerade hacer Europa’’) (SAF2016-79490-R), the Instituto de Salud Carlos III (AC16/00091 and AC17/00067), the Fundacio Marato TV3 (122/C/2015), and the Progeria Research Foundation (Established Investigator Award 2014–52). TheCNIC is supported by the Instituto de Salud Carlos III (ISCIII), the Ministerio de Ciencia, Innovacion y Universidades (MCIU), and the Pro CNIC Foundation,and is a Severo Ochoa Center of Excellence (SEV-2015-0505). This work wassupported by core support grants from the Wellcome Trust and the MRC to theCambridge Stem Cell Institute, MEIC (SAF-2011-30308), Ramon y Cajal Program Grant (RYC-2009-04703), ConSEPOC-Comunidad de Madrid (S2010/BMD-2542), National Health Service Blood and Transplant (United Kingdom), European Union’s Horizon 2020 research (ERC-2014-CoG-64765 and MarieCurie Career Integration grant FP7-PEOPLE-2011-RG-294096), and a Programme Foundation Award from Cancer Research UK to S.M.-F., who wasalso supported in part by an International Early Career Scientist grant fromthe Howard Hughes Medical Institute.S
    • …
    corecore