
The University of Maine The University of Maine 

DigitalCommons@UMaine DigitalCommons@UMaine 

Marine Sciences Faculty Scholarship School of Marine Sciences 

8-1-2019 

A review of protocols for Fiducial Reference Measurements of A review of protocols for Fiducial Reference Measurements of 

downwelling irradiance for the validation of satellite remote downwelling irradiance for the validation of satellite remote 

sensing data over water sensing data over water 

Kevin G. Ruddick 
Koninklijk Belgisch Instituut voor Natuurwetenschappen 

Kenneth Voss 
University of Miami 

Andrew C. Banks 
Hellenic Centre for Marine Research 

Emmanuel Boss 
University of Maine, emmanuel.boss@maine.edu 

Alexandre Castagna 
Universiteit Gent 

See next page for additional authors 
Follow this and additional works at: https://digitalcommons.library.umaine.edu/sms_facpub 

 Part of the Oceanography and Atmospheric Sciences and Meteorology Commons 

Repository Citation Repository Citation 
Ruddick, Kevin G.; Voss, Kenneth; Banks, Andrew C.; Boss, Emmanuel; Castagna, Alexandre; Frouin, 
Robert; Hieronymi, Martin; Jamet, Cedric; Johnson, B. Carol; Kuusk, Joel; Lee, Zhongping; Ondrusek, 
Michael; Vabson, Viktor; and Vendt, Riho, "A review of protocols for Fiducial Reference Measurements of 
downwelling irradiance for the validation of satellite remote sensing data over water" (2019). Marine 
Sciences Faculty Scholarship. 211. 
https://digitalcommons.library.umaine.edu/sms_facpub/211 

This Article is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for 
inclusion in Marine Sciences Faculty Scholarship by an authorized administrator of DigitalCommons@UMaine. For 
more information, please contact um.library.technical.services@maine.edu. 

https://digitalcommons.library.umaine.edu/
https://digitalcommons.library.umaine.edu/sms_facpub
https://digitalcommons.library.umaine.edu/sms
https://digitalcommons.library.umaine.edu/sms_facpub?utm_source=digitalcommons.library.umaine.edu%2Fsms_facpub%2F211&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/186?utm_source=digitalcommons.library.umaine.edu%2Fsms_facpub%2F211&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.library.umaine.edu/sms_facpub/211?utm_source=digitalcommons.library.umaine.edu%2Fsms_facpub%2F211&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:um.library.technical.services@maine.edu


Authors Authors 
Kevin G. Ruddick, Kenneth Voss, Andrew C. Banks, Emmanuel Boss, Alexandre Castagna, Robert Frouin, 
Martin Hieronymi, Cedric Jamet, B. Carol Johnson, Joel Kuusk, Zhongping Lee, Michael Ondrusek, Viktor 
Vabson, and Riho Vendt 

This article is available at DigitalCommons@UMaine: https://digitalcommons.library.umaine.edu/sms_facpub/211 

https://digitalcommons.library.umaine.edu/sms_facpub/211


remote sensing  

Review

A Review of Protocols for Fiducial Reference
Measurements of Downwelling Irradiance for the
Validation of Satellite Remote Sensing Data
over Water

Kevin G. Ruddick 1,*, Kenneth Voss 2 , Andrew C. Banks 3, Emmanuel Boss 4 ,
Alexandre Castagna 5 , Robert Frouin 6 , Martin Hieronymi 7 , Cedric Jamet 8 ,
B. Carol Johnson 9, Joel Kuusk 10 , Zhongping Lee 11, Michael Ondrusek 12, Viktor Vabson 10

and Riho Vendt 10

1 Royal Belgian Institute of Natural Sciences (RBINS), Operational Directorate Natural Environment,
29 Rue Vautierstraat, 1000 Brussels, Belgium

2 Physics Department, University of Miami, Coral Gables, FL 33124, USA
3 Institute of Oceanography, Hellenic Centre for Marine Research (HCMR), Former US Base Gournes,

71500 Hersonissos, Crete, Greece
4 University of Maine, Orono, ME 04469, USA
5 Protistology and Aquatic Ecology Research Group, Gent University, Krijgslaan 281, 9000 Gent, Belgium
6 Scripps Institution of Oceanography, University of California San Diego, 8810 Shellback Way,

La Jolla, CA 92037, USA
7 Institute of Coastal Research, Helmholtz-Zentrum Geesthacht (HZG), Max-Planck-Str. 1,

21502 Geesthacht, Germany
8 Université du Littoral-Côte d’Opale, CNRS, Université de Lille, UMR8187, F62930 Wimereux, France
9 National Institute of Standards and Technology (NIST), 100 Bureau Drive, Gaithersburg, MD 20899, USA
10 Tartu Observatory, University of Tartu, 61602 Tõravere, Estonia
11 School for the Environment, University of Massachusetts Boston, 100 Morrissey Blvd.,

Boston, MA 02125-3393, USA
12 National Oceanic and Atmospheric Administration (NOAA), Center for Weather and Climate Prediction,

5830 University Research Court, College Park, MD 20740, USA
* Correspondence: kruddick@naturalsciences.be

Received: 17 June 2019; Accepted: 18 July 2019; Published: 24 July 2019
����������
�������

Abstract: This paper reviews the state of the art of protocols for the measurement of downwelling
irradiance in the context of Fiducial Reference Measurements (FRM) of water reflectance for satellite
validation. The measurement of water reflectance requires the measurement of water-leaving radiance
and downwelling irradiance just above water. For the latter, there are four generic families of method,
using: (1) an above-water upward-pointing irradiance sensor; (2) an above-water downward-pointing
radiance sensor and a reflective plaque; (3) a Sun-pointing radiance sensor (sunphotometer); or (4) an
underwater upward-pointing irradiance sensor deployed at different depths. Each method—except
for the fourth, which is considered obsolete for the measurement of above-water downwelling
irradiance—is described generically in the FRM context with reference to the measurement equation,
documented implementations, and the intra-method diversity of deployment platform and practice.
Ideal measurement conditions are stated, practical recommendations are provided on best practice,
and guidelines for estimating the measurement uncertainty are provided for each protocol-related
component of the measurement uncertainty budget. The state of the art for the measurement of
downwelling irradiance is summarized, future perspectives are outlined, and key debates such as the
use of reflectance plaques with calibrated or uncalibrated radiometers are presented. This review
is based on the practice and studies of the aquatic optics community and the validation of water
reflectance, but is also relevant to land radiation monitoring and the validation of satellite-derived
land surface reflectance.
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1. Introduction

The objective of this paper is to review the state-of-the-art of protocols for the measurement of
downwelling irradiance, as used for the validation of satellite remote sensing data over water.

1.1. The Need for Fiducial Reference Measurements for Satellite Validation

Satellite remote sensing data is now used routinely for many applications, including the monitoring
of oceanic phytoplankton in the context of global climate change, the detection of harmful algal blooms
in coastal and inland waters, the management of sediment transport in coastal water, estuaries, and ports,
the optimization and monitoring of dredging operations, etc. [1]. To be able to trust and use the remote
sensing data, this must be validated, usually by a “matchup” comparison of simultaneous measurements
by satellite and in situ. The terminology of “Fiducial Reference Measurements (FRM)” was introduced to
establish the requirements on the in situ measurements that can be trusted for use in such validation.
Using the definition proposed by [2] in the context of sea surface temperature measurements, the defining
mandatory characteristics of a “Fiducial Reference Measurement (FRM)” are:

• An uncertainty budget for all FRM instruments and derived measurements is available and
maintained, and is traceable where appropriate to the International System of Units/Système
International d’unités (SI), ideally through a National Metrology Institute;

• FRM measurement protocols and community-wide management practices (measurement,
processing, archive, documents, etc.) are defined and adhered to;

• FRM measurements have documented evidence of SI traceability that is validated by an
intercomparison of instruments under operational-like conditions;

• FRM measurements are independent from the satellite retrieval process.

The second term above, given in bold, situates the current review, which should provide such a
definition of measurement protocols for the downwelling irradiance measurement.

1.2. Scope and Definitions

This review is focused on the validation of satellite data products for water reflectance at the
bottom of the atmosphere. In the present review, the terminology of “remote sensing reflectance”, Rrs,
is used as shown in Equation (1):

Rrs(λ,θ,φ) =
Lw(λ,θ,φ)

E0+
d (λ)

(1)

where E0+
d (λ) is the above-water downwelling irradiance, which is also called the “spectral downward

plane irradiance”, and Lw(λ,θ,ϕ) is the water-leaving radiance [3], after the removal of the air–water
interface reflection, just above the water in the upward direction measured by the radiance sensor and
defined by nadir viewing angle θ and azimuth angle ϕ. The conventions used for these angles are
defined in Figure 1.
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Figure 1. Nadir and azimuth viewing angle conventions illustrated for a reference system centered on
the water surface (black dot). (a) Viewing nadir angle, θ, is measured from the downward vertical
axis: upward radiances are viewed at θ < π/2, downward radiances (from sky and Sun) are viewed at
θ > π/2. (b) Azimuth viewing angle, φ, and relative azimuth viewing angle, ∆φ, are measured for
viewing directions clockwise from the north and Sun respectively: radiance viewed by a radiometer
pointing toward north has an azimuth viewing angle of 0, and radiance viewed by a radiometer
pointing toward and away from the Sun have relative azimuth viewing angles of 0 and π, respectively.

E0+
d (λ) is itself defined [3] as the integral of radiance, L(λ,θ,φ), over the downward hemisphere of

solid angles (giving the geometric factor Sinθ) and weighted by
∣∣∣Cos(θ)

∣∣∣ (since this is plane irradiance)
and is measured in Wm−2 nm−1:

E0+
d (λ) =

∫ 2π

φ=0

∫ π

θ=π/2
L(λ,θ,φ)

∣∣∣Cos(θ)
∣∣∣Sinθdθdφ (2)

In the following text, λ, θ, and φ are omitted in the notations for brevity.
The θ integral limits from π/2 to π in Equation (2) correspond to the nadir viewing angle

convention defined in Figure 1, but are different from the integration limits from 0 to π/2 found in some
references, e.g., Equation (2.9) of [4], which defines θ as the incidence angle of photons from air. While
there is diversity in the nadir/zenith angle terminology in different references, and Figures 2.1 and 2.4
of [4] are themselves quite ambiguous in the use of θ, in practice it is not difficult to follow a consistent
angle convention. Similarly, for azimuth angles, these may be defined in some references for the light
propagation direction or for the direction toward which the radiometer is pointing (or, in satellite
metadata, for the azimuth of the satellite/Sun as seen from the ground location). These azimuth angle
conventions can easily be understood and converted provided that they are well defined.

Thus, the validation of Rrs is based on simultaneous measurement of two parameters: E0+
d

and Lw. A companion paper [5] focuses on the measurement of Lw(λ). The present review focuses
on the measurement of E0+

d , reviewing the state-of-the-art of measurement protocols in the FRM
context, particularly as regards components of the measurement uncertainty budget relating to the
measurement protocol.

In addition to the use of E0+
d to enable the validation of satellite-derived reflectance, E0+

d
measurements can also be used to validate separately the E0+

d (or equivalently the atmospheric
transmittance) calculated as an intermediate product in satellite data-processing chains.
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In some references, E0+
d may be called “surface irradiance”—typically with notation Es—or more

ambiguously “reference irradiance”. The parameter is most completely described as “above-water
spectral downward horizontal plane irradiance”.

E0+
d is composed of photons that reach the surface directly from the Sun (“direct irradiance”) and

of photons that reach the surface from the sky after scattering in the atmosphere (“diffuse irradiance”).
The latter may also include some photons that have interacted with the surrounding surface and
subsequently been backscattered in the atmosphere—see page 12 of [6].

Thus, E0+
d spectra are related to: (a) the extraterrestrial solar irradiance, (b) the Sun zenith angle,

(c) atmospheric scattering and absorption from molecules, aerosols, and clouds, and (d) to a lesser
extent, surface reflectance. Some typical E0+

d are plotted in Figure 2 for different Sun zenith angles and
atmospheric conditions.
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Figure 2. E0+
d for four combinations of Sun zenith angle (SZA) and atmospheric conditions, averaged

over 5-nm bands. Solid colored lines are total E0+
d ; dashed lines are the corresponding direct component.

The solid black line is the band-averaged extraterrestrial solar downwelling irradiance for comparison.
Redrawn from [7].

In sunny, low to moderate Sun zenith angle conditions where direct irradiance is greater than
diffuse irradiance, E0+

d varies over the day approximately according to the cosine of the Sun zenith
angle. This temporal variability is greatest just after sunrise and just before sunset. The time averaging
of replicate E0+

d measurements can be simple mean averaging with reference to a central time if
the total duration for replicates is short or can be normalized by the cosine of the Sun zenith angle
before averaging.

The present paper is focused on aquatic applications, including the full range, size, and diversity
of water bodies from deep oceans through coastal and estuarine waters to ports and inland lakes.
The measurement of E0+

d is required also for the radiometric validation of surface reflectance over
land—such applications are not the focus of the present paper, although there are in principle no major
differences between the measurement of E0+

d over land and over water. Measurements of E0+
d without

simultaneous Lw are also relevant, outside the Rrs validation context, for a variety of applications,
including monitoring the Earth’s radiation budget for climate applications [8,9], ground-level ultraviolet
radiation [10,11] for health-related and ecosystem-related applications, photosynthetically available
radiation for biological applications [12,13], solar energy and building applications [14], etc. These
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applications are not specifically covered here, although many considerations of the measurement
protocols described here are valid for all such applications.

Using the terminology of [15], the spectral ranges of primary interest here are the visible (380 nm
to 760 nm) and near infrared (760 nm to 1400 nm) ranges. The considerations for measurement of E0+

d
given here should be valid also for the near ultraviolet (300 nm to 400 nm) and middle infrared (1400 nm
to 3000 nm), although the importance of the various uncertainty sources may be different because
of the different intensity and angular distribution of downwelling irradiance, and the equipment
(irradiance/radiance sensor, reflectance plaque) may have different properties in these ranges.

The protocols described here are relevant for the validation of a vast range of optical satellites,
including the dedicated medium resolution “ocean color” missions, such as AQUA/MODIS,
Sentinel-3/OLCI, NPP/VIIRS, etc., but also the operational high spatial resolution missions such
as Landsat-8/OLI and Sentinel-2/MSI, as well any other optical mission from which water reflectance
can be derived, including the geostationary COMS/GOCI-1 and MSG/SEVIRI, the extremely high
resolution Pléiades and PlanetDove constellations, etc.

The current document does not try to identify a “best” protocol; it cannot provide typical
uncertainty estimates if good practice is followed (that depends on many factors) and does not aim to
prescribe mandatory requirements on specific aspects of a measurement protocol such as “acceptable
tilt” or “minimum distance for ship shadow avoidance”. While such prescriptions have great value
in encouraging convergence of methods and challenging scientists to make good measurements,
the diversity of aquatic and atmospheric conditions where validation is required, the diversity of
radiometers and platforms, and the corresponding diversity of measurement protocols suggests that
more flexibility is needed. This flexibility is acceptable, provided that each measurement is accompanied
by an SI-traceable uncertainty budget that is: (a) based on a full analysis of the protocol, and (b) that is
itself validated, e.g., by measurement intercomparison exercises [16–18]. Then, the data user can accept
or reject such measurements by applying their own threshold for “acceptable” measurement uncertainty.

The present review does aim to provide an overview of all the relevant protocols, including
guidelines for radiometer deployment and the quality control of data and an overview of elements that
should be considered in the complete uncertainty analysis of a measurement protocol. The approach
is structured as follows: for each aspect of the measurement protocol contributing to measurement
uncertainty, the perfect situation is summarized in a single sentence in boldface, e.g., “the irradiance
sensor should be vertical”. This is followed by a discussion of techniques to achieve or monitor this
(e.g., gimballing, measurement of tilt, removal of tilted data), practical considerations and problems
(e.g., changes to ballasting of ships), and approaches to estimate uncertainty when this perfect situation
is not achieved (e.g., model studies, experiments). While this highly structured approach may seem
over-rigorous or even trivial (isn’t it obvious that an irradiance sensor should be vertical?), we do feel
that it is necessary to be complete and rigorous in the FRM context (is it obvious to all measurement
scientists that a reflectance plaque should be perfectly horizontal?).

For a general treatment of uncertainties in measurements, including a recommended terminology
(e.g., “expanded uncertainty”) and generic methods for estimating each component uncertainty and
combining uncertainties to achieve a total uncertainty, the reader is referred to the Guide to the
Expression of Uncertainty in Measurement (GUM) [19].

The present review covers only aspects of the measurement relating to the protocol, including
radiometer deployment, data acquisition, and processing aspects, but excluding any uncertainties
arising from radiometer imperfections, such as calibration, thermal sensitivity, spectral response
(straylight/out-of-band effects), non-linearity, and angular (cosine) response. These radiometer-related
aspects deserve a review paper of their own; the reader is referred to Volume II of the NASA Ocean
Optics Protocols [20], Section 3 of [21], Chapter 2 of [22] and to the papers in this volume, e.g., [23,24].

In the satellite validation context covered by this review, the focus is on clear sky conditions.
There is no clear consensus regarding an objective definition of “clear sky” conditions, although Web
Appendix 1 of [25] proposes for moderate Sun zenith angles the test Ld/E0+

d (750 nm) < 0.05, where Ld
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is sky radiance at a 135◦ relative viewing azimuth to the Sun and a 140◦ viewing nadir angle. This test
will detect clouds in front of the Sun because of the consequent increase in 1/E0+

d , and will detect
clouds in the specified sky-viewing direction because clouds have greater Ld values than blue sky at
750 nm. A more complete test for “clear sky” conditions could involve the use of hemispherical camera
photos, but would need automated image analysis for an objective test.

1.3. Previous Protocol Reviews

Most of the pre-2004 in situ measurements of water reflectance were made for the purpose of
oceanic applications, and most aquatic optics investigators base their measurement protocol in some
way on the NASA Ocean Optics Protocols [20] and the references contained within that multi-volume
publication. While there are no fully new methods for the measurement of E0+

d since the NASA 2004
protocols collection, the current review aims to better reflect the current practices. The main evolutions
since 2004 include:

• more frequent use of unsupervised measurements for validation, e.g., AERONET-OC [26] and
Bio-ARGO [27], instead of shipborne supervised measurements

• greater need for validation measurements in coastal and inland waters rather than the prior focus
on oceanic waters

• preference for above-water measurement of E0+
d rather than extrapolation from underwater profiles

• reduction in the cost of radiometers facilitating use of an irradiance sensor (instead of a radiance
sensor and a reflectance plaque), and better availability of hyperspectral radiometers.

1.4. Overview of Methods

Protocols for measurement of E0+
d are grouped into three broad families of method:

• Direct above-water measurement of E0+
d with an upward-pointing irradiance sensor (“Irradiance

sensor method”)
• Estimation of E0+

d using a downward-pointing radiance sensor and a reflective plaque (“Reflectance
plaque method”)

• Estimation of E0+
d from direct sunphotometry and a clear sky atmospheric model (“Sunphotometry

method”)

A fourth family of method, estimating E0+
d from underwater measurements of downwelling

irradiance at differences depths, Ed(z), is now considered obsolete for measurement of E0+
d —see

Section 5.
For each family of method, the measurement equation is defined, and the measurement

parameters are briefly described in Sections 2–4, respectively. The elements that should be included
for the estimation of total protocol-related measurement uncertainty are discussed with some key
considerations, guidelines, and recommendations. The “protocol-related” measurement uncertainty
includes both known imperfections in the protocol (e.g., atmospheric models used in sunphotometry)
and deployment-related imperfections (e.g., the tilting of sensors/plaques).

2. Direct above-Water Measurement of E0+
d

with an Upward-Pointing Irradiance Sensor

2.1. Measurement Equation

Since E0+
d can be measured directly using radiometers that are designed to measure plane

irradiance, the measurement equation here simply relates the electrical output of a radiometer
to calibrated irradiance. Imperfections in such radiometers (angular response, spectral response,
non-linearity, thermal sensitivity, etc.) contribute, of course, to the total uncertainty budget of the
measurement, and the imperfect cosine response is an important consideration for the measurement of
E0+

d , e.g., [24,28].
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The direct measurement of E0+
d , which is sketched in Figure 3, can be made from various platforms

including ships, small inflatable boats, buoys, fixed offshore structures, and underwater profiling
platforms that contain a floating element or the ability to surface. These measurements can be either
supervised or unsupervised. In all cases, it is recommended to mount the E0+

d radiometer as high
as possible, above any superstructure elements and passing humans, in order to avoid the optical
contamination of the measurement from the shading of both Sun and sky light. This can be achieved
by the use of a fixed or telescopic mast, e.g., [29].
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2.2. Protocol-Dependent Sources of Uncertainty

In addition to the radiometer-related sources of uncertainty that arise from imperfections in
the radiometers themselves, including the angular (cosine) response of the radiometer, the direct
measurement of above-water downwelling irradiance has a number of sources of uncertainty relating
to the deployment conditions. These protocol-related sources of uncertainty are described in
Sections 2.2.1–2.2.4.

2.2.1. Tilt Effects

The irradiance sensor should be vertical.
The non-verticality of the E0+

d radiometer, e.g., caused by imprecise installation, wave-tilting of
floating structures (buoys, ships), wind-tilting of offshore structures, including masts, and even ballast
changes for ships (shifts in fuel, water, large equipment), will result in a bias in the measurement of
E0+

d . Therefore, it is necessary to measure the tilt of radiometers at sufficiently high frequency and
perform the appropriate filtering of non-vertical data and/or averaging of data to reduce tilt effects.

For E0+
d , the effect of tilt may be particularly strong in sunny (satellite validation) conditions

because of the highly anisotropic light field. The main effect of tilt is similar to a change in the effective
Sun zenith angle, and is strongest for tilt in the solar plane. The passive gimballing of an E0+

d sensor,
if sufficiently well designed, may help to reduce tilt, as implemented in the DALEC system [30,31].
Active gimballing of an E0+

d sensor, using electric motors to correct for tilt, may now be feasible,
although at the time of writing, the authors are not aware of documentation on the use of such hardware
for E0+

d measurement.
The impact of tilt on measurement uncertainty can be estimated if the two angles of tilt with

respect to the Sun are measured and the approximate angular variation of sky radiance is known,
e.g., from imaging cameras, or estimated from atmospheric properties. At high tilt, an E0+

d sensor may
also measure some light from the underlying water/land/platform surface instead of the sky, although
grazing angle incident light has a low contribution to the cosine-weighted integral for E0+

d .
Obviously, minimization of tilt can be a consideration in the design [32] or in the location

(e.g., low waves) of validation measurement structures. Floating buoys and small ships may be
particularly subject to high tilt.
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2.2.2. Shading from Superstructure

The irradiance sensor should be deployed above the height of all the other structures or objects
(including humans).

The light field that is being measured may itself be perturbed by the presence of solid objects such
as the superstructure of the platform used to mount them. This may be especially problematic on
ships, where practical considerations may prevent mounting the E0+

d sensor above all other structures,
particularly if regular inspection by humans of the fore-optics is required.

The process of sky shading can be easily understood from fish-eye photographs taken vertically
upwards at the location of an E0+

d sensor, as illustrated in Figures 4 and 5. Any part of the upward
hemisphere that is not sky represents optical contamination of the measurement, and this contamination
will be related to the solid angle of sky that is replaced by the object with near-zenith objects contributing
more than near-horizontal objects to the cosine integral of radiances. Of course, it is best to make such
photos with a calibrated fully hemispherical sky radiance camera [33]. However, even photos from
simple cameras with a wide-angle lens and without any radiometric calibration can rapidly identify a
major contamination of measurements from superstructures and/or other objects.
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Figure 4. Schematic showing how a fish-eye camera, preferably fully hemispherical, can be used to
qualitatively check for the superstructure contamination of E0+

d measurements.

While direct Sun shadowing of the E0+
d sensor is generally avoided by design of the deployment

method and can easily be identified and removed from data, the impact of more subtle optical
contaminations of sky radiance can be more difficult to identify and estimate.

It is obvious that humans should remain fully below the level of an E0+
d sensor at all times during

measurements. It is not unknown for resting birds to contaminate unsupervised E0+
d measurements [34],

and measures may be taken to avoid this, e.g., the use of spikes below the field of view, but sufficiently
close to threaten discomfort. Unusual contaminations may be identified by time series analysis or
video camera monitoring of unsupervised installations.

On some platforms, optical contamination may also arise from atmospheric steam or smoke
emissions from ship engine funnels and other exhaust gases (air conditioning, etc.).

Fixed offshore structures with limited access (e.g., oil and gas platforms, wind farm structures,
navigational structures) as well as large ships with tall masts may be particularly subject to
superstructure shading. Improvements in the stability of telescopic masts [35], which allow high
mounting but easy inspection of fore-optics, and reductions in the price of such equipment should
facilitate the adoption of deployment techniques with greatly reduced or zero superstructure shading.
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Figure 5. Example fish-eye photos taken to check for contamination of E0+
d measurements.

(a) Contamination of field of view by other radiometers; (b) Contamination of field of view by a
scientist in the bottom of the photo; (c) No contamination of field of view, partly cloudy sky; (d) No
contamination of field of view, clear sky. The trees visible in the bottom-left photo, typical of inland water
or very nearshore measurements, do affect the measurement, but are not considered as “contamination”
in the context of this review. The impact of such far-field objects contributes to the natural downwelling
irradiance at the measurement location, and should be measured as such.

For supervised shipborne E0+
d measurements, the use of a floating platform to carry the

E0+
d radiometer away from the ship will clearly minimize—to possibly a negligible amount—the

superstructure-related perturbations. This may be conveniently combined in a floating/profiling
platform used for underwater profiling of upwelling radiance.

Measures to reduce and/or estimate the uncertainties associated with superstructure shading
may include redundant measurements by multiple sensors located in different positions, and hence
subject to different shading effects, or experiments with sensors at different heights/locations, etc.
Three-dimensional (3D) radiative transfer modeling may also be used to estimate uncertainties in E0+

d
measurements associated with superstructure effects.

2.2.3. Fouling

The fore-optics of the irradiance sensor should be kept clean.
Upward-facing sensors needed for measuring E0+

d are prone to fouling of the fore-optics, especially
during long-term unsupervised deployments.

Fouling may occur because of sea spray, the atmospheric deposition of particles (which may even
embed within the structure of some diffuser materials used as fore-optics [36]), rain droplets, bird feces,
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etc. This can be mitigated by cleaning the fore-optics, and can be monitored by frequent calibration
checks, e.g., with portable relative calibration devices [37].

Fouling is generally kept negligible for supervised deployments by regular inspection and,
when necessary, the cleaning of fore-optics and protection by lens caps when not measuring
(e.g., at night and between “stations” for discrete measurements).

Exposure to ultraviolet light can lead to the photodegradation of materials used as diffusers.
For unsupervised deployments, fouling and photodegradation can be minimized by the protection

of fore-optics when not measuring by the use of external mechanical shutters [38] or the rotation of
sensors to point downwards (typified by the “parking” function of the CIMEL CE-318 sunphotometer
when not measuring).

Major fouling events can be identified by time series analysis of data and/or video camera imagery.
The uncertainty related to fouling can be estimated by comparing post-deployment calibrations

before and after cleaning, although it is also noted that fouling may vary non-monotonically in
time because of the cleaning effect of rain water. To separate the effects of fouling from intrinsic
sensitivity changes (e.g., long-term drift or short-term changes typically caused by mechanical shock),
these measurements must be done immediately before and after cleaning, e.g., in the field (using a
stable light source such as a clear sky) or in a calibration laboratory (which must be provided with the
uncleaned radiometer).

2.2.4. Fast Natural Fluctuations

Measurements should be used only during periods of stable illumination.
In clear sky conditions, the natural variability of E0+

d over a typical measurement time scale
(~1 to 10 min) is low, and may be easily estimated from a clear sky irradiance model, e.g., [39], using
as input the temporal variation of the Sun zenith angle and an estimation/measurement of aerosol
optical thickness.

If measurements are made during partially cloudy conditions, in addition to the tilt-induced
fluctuations described in Section 2.2.1, the natural variability of E0+

d may be non-negligible, particularly
if there are clouds or haze near the Sun. In such cases, careful quality control of data is necessary to
remove individual measurements or complete sets of measurements that cannot be used for satellite
validation. Quality control will typically include tests on temporal variability including second
derivative “spike/jump” analysis and min/max/standard deviation analysis, and may also include the
comparison of data with a clear sky model.

A full sky imager can be used to provide detailed information on sky conditions for quality
control [40].

It is suggested here that FRM for satellite validation should not be made during fully cloudy
conditions or when the Sun is obscured by clouds or haze. In situ measurements can be made at a
slightly different times from the satellite overpass, e.g., 1 to 6 h depending on natural variability, and so
a cloud-free satellite image could theoretically correspond with an in situ reflectance measurement
made during cloudy conditions within an acceptable time window. However, many factors, including
the very different bidirectional reflectance of water under a sunny or a cloudy sky, suggest that this
should be avoided in the FRM satellite validation context. In other contexts, such as the simultaneous
measurement of reflectance and chlorophyll a for algorithm calibration/validation, it may be acceptable
to use measurements made in cloudy conditions, particularly fully overcast conditions, provided that
the corresponding measurement uncertainties are sufficiently quantified and limited.

The question of whether FRM can be made in partially cloudy conditions is relevant. It can
be argued that only the best measurements should be used, and this requires perfectly clear sky
conditions. On the other hand, if a measurement scientist is able to estimate the uncertainties associated
with partially cloudy conditions, then the data user could later decide whether to use or reject such
measurements for their specific application on the basis of a threshold on measurement uncertainty.
There is no clear consensus on this question at present, but perhaps the debate requires first a more
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objective definition of “cloudiness“ and/or “clear sky“ conditions—see Section 1.2. Isolated clouds with
small solid angles, away from the Sun and low on the horizon, so with low zenith cosine weighting,
have little impact on E0+

d .
Uncertainties associated with fast natural fluctuations can be estimated from the standard deviation

of replicate measurements made over a certain interval of time. High uncertainty may lead to simple
rejection of the measurement.

2.3. Variants on the Method of Direct above-Water Measurement of E0+
d with an Upward-Pointing

Irradiance Sensor

Underwater drifting floats used for satellite radiometry validation [27] may lack a permanently
above-water E0+

d sensor, and make only occasional E0+
d measurements when surfacing. There is no

fundamental difference between the “surfacing” E0+
d sensor and the permanently above-water E0+

d
sensors considered in the rest of this review. However, it is noted that there may be different designs of
E0+

d sensors for in-water and in-air measurements; the time and horizontal space differences between
E0+

d and Lw measurements must be considered; and the presence of water, as already mentioned in
Section 2.2.3, and aquatic algae on the fore-optics may be more problematic.

With an additional moving “shadowband” accessory, it is possible to combine full Sun and sky
E0+

d with a direct Sun-obscured measurement, thus giving the diffuse sky component of E0+
d , which is

termed Edi f
d . This is not commonly used for the validation of satellite data over water, since the primary

radiometric product from satellites, e.g., the reflectance product given in Equation (1), does not require
a decomposition of E0+

d into direct and diffuse components. However, this additional information
does provide the additional opportunity to validate the satellite data processing for direct and
diffuse atmospheric transmittance, and does potentially allow improving the bidirectional reflectance
distribution functions (BRDF) corrections. The measurement of direct and diffuse components of
E0+

d can also be used to improve self-shading corrections when making underwater measurements of

upwelling radiance. The measurement of Edi f
d in addition to the total E0+

d is of major importance for other
applications such as earth radiation budget monitoring, agriculture, solar energy, etc. A discussion of
Edi f

d data acquisition and processing with the shadowband technique can be found in [41].

3. Estimation of E0+
d Using a Downward-Pointing Radiance Sensor and a Reflective Plaque

3.1. Measurement Equation

E0+
d can also be calculated indirectly by measuring the exitant radiance, LP, from a horizontally

deployed reflectance plaque of known reflectance, ρP—see Figure 6. If the plaque is perfectly
Lambertian, then:

E0+
d =

π ∗ LP

ρP
(3)

where all the terms may vary with wavelength, but the wavelength variation is dropped for brevity
throughout this section. If the plaque is not perfectly Lambertian, then the downwelling light
field can be approximated as a collimated beam of light from the Sun direction [42], giving the
measurement equation:

E0+
d =

LP(θv,φv)

fr(θi,φi,θv,φv)
(4)

where fr(θi,φi,θv,φv) is the plaque bidirectional reflectance distribution function (BRDF), θv,φv are
the viewing nadir and azimuth angles and θi,φi are the zenith and azimuth angles of the incident
collimated beam, which are generally assumed to correspond to the Sun beam direction.
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Figure 6. Schematic showing indirect measurement of E0+
d using a downward-pointing radiance sensor

and a reflective plaque (sensor, plaque, and holder not to scale).

A common material for such plaques is sintered polytetrafluorethylene (PTFE), which is typically
sold under the product name Spectralon™ (see disclaimer at the end before the references), which can
be manufactured to give near 100% reflectance (ρP ≈ 1.0) for “white” plaques with low spectral
variation of reflectance, low departure from the perfect Lambertian angular response [43], low spatial
heterogeneity, and reasonable temporal stability. Lower reflectance “grey” plaques, e.g., ρP ≈ 0.18,
can also be used, although they have less Lambertian angular response. Other diffusive materials
have been used in this method, including grey “cards” that are used traditionally in photography.
All the materials used in the FRM context need to be adequately characterized as regards bidirectional,
spectral, spatial and temporal variability.

Historically, the measurement of E0+
d using a downward-pointing radiance sensor and a Lambertian

reflective plaque was adopted for cost considerations, allowing all the measurements to be made with a
single radiance sensor. This method also allows the reduction of some calibration-related uncertainties,
since only one sensor is used. Moreover, if only Rrs is required, this method may be implemented with
an uncalibrated sensor (but see the discussion in Section 3.1.1).

The reflectance plaque method is popular in the land remote sensing community, possibly because
the measurements for some middle infrared wavelengths (1.4 µm to 2.5 µm) are important, which very
significantly raises the cost of a radiometer and increases the uncertainty relating to cosine response
for an irradiance sensor with a transmissive diffuser.

Measurements with a reflective plaque are often supervised, although it is possible to automate
such measurements, e.g., [44].

Outside the FRM satellite validation context, the educational value of measurements made using
this protocol, e.g., with very simple and inexpensive optical radiometers [45], is clearly recognized.

3.1.1. Is It Necessary to Use a Calibrated Radiance Sensor?

The preparation of this review generated much discussion within the community regarding
the question of whether an uncalibrated radiance sensor can be used to acquire measurements for
satellite validation. This method was suggested in the NASA Ocean Optics protocols 2003 version
“Method 2” [46] as being appropriate for the measurement of reflectance using an uncalibrated
sensor. Indeed Rrs can be calculated via Equation (1) from measurements of Lw and E0+

d made by
the same radiance sensor, even if this sensor is not calibrated, i.e., providing data for Lw and E0+

d in
(dark-corrected) digital counts rather than in SI-traceable units. While it is essential to characterize the
sensor, e.g., for straylight, non-linearity, thermal effects, etc., it is not necessary to calibrate the sensor
to perform radiometer-related corrections and uncertainty estimates. In fact, some radiometer-related
uncertainties are best treated before calibration, e.g., non-linear effects may depend directly on the
digital count data [47,48] (as compared to the maximum possible, saturated, digital counts), but not on
the calibrated radiance.

There is formally nothing in the FRM definition that would require a calibrated radiance sensor to
be used for the measurement of Rrs. However, the use of a calibrated radiance sensor does have two
advantages:
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• A calibrated radiance sensor will provide a calibrated E0+
d , which can then be compared with clear

sky models [39] for quality control purposes, and can be compared to satellite data to validate the
computations of atmospheric transmittance (in addition to the more important Rrs products).

• The interpretation of in situ measurement intercomparison exercises [17], as required by the FRM
process, necessitates a separation of uncertainties arising from Lw and E0+

d measurements, e.g.,
comparing E0+

d measurements from a vertically-mounted irradiance sensor (impacted by cosine
angle uncertainties, etc.) with E0+

d measurements deduced from a radiance sensor viewing a
reflectance plaque (impacted by BRDF uncertainties, etc.).

Moreover, it is noted [42] that the simple cancellation of unknown calibration factors used to
calculate Rrs = πLw/E0+

d in native spectral resolution no longer works precisely when spectrally
convolving Lw and E0+

d with a spectral response function, as needed for the validation of Rrs for
individual spectral bands of satellite sensors.

3.1.2. What Nadir Angle Should Be Used for Viewing a Reflectance Plaque?

The NASA 2003 protocols (Volume III, Section 3.3) recommended that measurements of E0+
d with

a reflective plaque should be made with a vertical downward (nadir) pointing radiance sensor and a
plaque with BRDF calibration for varying downwelling light distributions (typically characterized
by Sun zenith angle) and vertical upwelling reflected radiance. However, off-nadir viewing with
the same nadir angle as water-viewing Lw measurements, typically 40◦, has often been adopted
for practical reasons, e.g., for easy switching between plaque and water-viewing modes for certain
deployments. It is noted that [49] provides the scientific basis for a water-viewing nadir angle of 40◦

(and relative azimuth to Sun of 135◦) as a good geometry for sunglint avoidance, but does not give a
scientific basis for a plaque-viewing nadir angle of 40◦—the latter is merely suggested as practically
convenient. On the other hand, an off-nadir plaque-viewing geometry may indeed be desirable for
scientific reasons, since the radiometer shading of the plaque will be greater with nadir-viewing when
the Sun zenith angle is low [42]. For off-nadir plaque viewing, there seems to be no standardization of
the viewing azimuth angle, although the same azimuth angle as used for Lw measurements (90◦ or 135◦

with respect to the Sun) would be a typical choice for both practical and shadow-avoidance reasons.
Optimal plaque-viewing geometry was investigated in [42], who recommend, for moderate Sun

zenith angles between 20–60◦, a plaque-viewing nadir angle of 40◦ for a ~100% reflective white plaque,
to minimize operator/radiometer shading/reflection, but a nadir view for less reflective, grey plaques,
where reflectivity may vary strongly with the viewing nadir angle. For both types of plaque, a viewing
azimuth angle of 90◦ with respect to the Sun was recommended.

The FRM context does not prescribe a single viewing geometry (or any other specific aspect
of a measurement protocol), but “simply” requires that, for whatever plaque-viewing geometry is
adopted, the related uncertainties (radiometer and superstructure shading of plaque, plaque BRDF)
be quantified.

3.2. Protocol-Dependent Sources of Uncertainty

In addition to the radiometer-related sources of uncertainty that arise from imperfections in the
radiometers themselves, the measurement of E0+

d using a reflectance plaque has a number of sources
of uncertainty relating to the deployment conditions. These protocol-related sources of uncertainty are
described in Sections 3.2.1–3.2.7.

3.2.1. Plaque Calibration

The reflectance plaque must be calibrated.
Clearly, the reflectance of the plaque used for this measurement must be calibrated with traceability

to an SI standard and an uncertainty associated with this calibration. Optical contamination/degradation
of the plaque and bidirectional effects are further considered in Sections 3.2.5 and 3.2.7.
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3.2.2. Plaque Homogeneity and Sensor Field of View

The reflectance plaque should be homogeneous and should fill the radiance sensor field of
view.

It is known that plaques do have spatial and azimuthal inhomogeneities, and so it is assumed
that the measurement area on the plaque corresponds sufficiently well to the area on the plaque used
during plaque calibration, taking account of the surface average of any inhomogeneities.

Clearly, the plaque must fully fill, and preferably exceed, the sensor field of view (FOV) so that
the measurement of E0+

d will not be contaminated by the background around the reflectance plaque.
This can be facilitated by small FOV radiometers. In any case, the angular response of the radiance
sensor should be checked for any residual response outside the manufacturer-specified FOV, e.g.,
by occulting the plaque partially with a black material moved from each edge of the plaque towards
the center until an impact is detected

Uncertainties associated with the sensor field of view and plaque inhomogeneity can be assessed
by experiments deploying the radiometers at different heights and at different horizontal locations
above the reflectance plaque, and by changing the background around the reflectance plaque (since the
radiometer shading effects will also vary with radiometer height—see Section 3.2.4).

3.2.3. Tilt Effects

The reflectance plaque should be horizontal.
The non-horizontality of the reflectance plaque that is used for measurements of E0+

d will give
uncertainty in the measurement of E0+

d in the same way as the non-verticality of an irradiance sensor
used to directly measure E0+

d , as discussed previously in Section 2.2.1. Tilting of the plaque can be
caused by a number of factors, including imprecise leveling and, if measuring from a ship, ship roll
during measurements. Therefore, it is necessary to measure the tilt of the plaque (not just the ship)
at sufficiently high frequency and perform the appropriate filtering of non-horizontal data and/or
averaging of data to reduce tilt effects.

Although digital inclinometers are now readily available for integration with radiometric data
streams, they seem to not yet be used for shipborne measurement of E0+

d using a reflectance plaque.
For E0+

d , the effect of tilt may be particularly strong in sunny (satellite validation) conditions
because of the highly anisotropic light field, and the effect of a non-horizontal plaque is similar to a
change in Sun zenith angle, and is strongest for tilt in the solar plane. At high tilt, the measurement
may also measure some light from the water/land/platform instead of the sky, although the grazing
angle incident light has a low contribution to the cosine-weighted integral for E0+

d .
The impact of tilt on measurement uncertainty can be estimated if the two angles of tilt with

respect to the Sun and approximate angular variation of the sky radiance (from imaging cameras or
estimated from atmospheric properties) are known—see Section 2.2.1.

The minimization of tilt should be a consideration in the choice of measurement platform, taking
account of expected wave conditions. Small ships may be particularly subject to high tilt because of
larger ship roll.

3.2.4. Shading from Superstructure and Radiometers and Mounting Equipment

The reflectance plaque should be deployed above the height of all other structures or objects
(including humans).

The light field that is being measured is itself perturbed by the presence of solid objects anywhere
above the level of the reflectance plaque. This includes, necessarily, the radiometer itself, which is used
for measurements, but also any superstructure elements of the ship/platform as well as any equipment
related to fixing the radiometer above the reflectance plaque.

The shading problems associated with this method are conceptually similar to those already
described for direct measurement of E0+

d (Section 2.2.2), but are significantly worse:
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• Firstly, there will always be some shading of sky radiance onto the plaque from the radiometer
itself. The radiometer must be held above the plaque at a height that is sufficiently small so
that the plaque fills the whole field of view of the radiometer. The exact height depends on the
radiometer and the size of the plaque. Shading from the radiometer (and any associated fixations)
will be related to the zenith cosine-weighted solid angle of sky filled by the radiometer, as seen
from any point on the reflectance plaque, and will be worse for radiometers held close to the
plaque or that have a large diameter.

• Secondly, while it is typical to mount irradiance sensors high on poles/masts (Section 2.2.2) and
certainly above head height, measurements with a reflectance plaque are nearly always made
much lower on a ship/platform for practical reasons: it is generally necessary to manipulate
the radiometer (e.g., to then point to water and sky) and the plaque (e.g., to protect it when
not measuring). Optical contamination from ship/platform sides, upper decks, masts, and even
humans (often including those making the measurement) can be significant and difficult to quantify.

The process of sky shading can be easily understood from fish-eye photographs taken vertically
upwards at the location of a reflectance plaque – see Figure 7. Any part of the upward hemisphere that
is not sky represents the optical contamination of the measurement, and this contamination will be
related to the zenith cosine-weighted solid angle of sky that is replaced by the object with near-zenith
objects contributing more than near-horizontal objects to the cosine integral of radiances.

Remote Sens. 2019, 11, x FOR PEER REVIEW 15 of 27 

 

The shading problems associated with this method are conceptually similar to those already 

described for direct measurement of 𝐸𝑑
0+ (Section 2.2.2), but are significantly worse: 

• Firstly, there will always be some shading of sky radiance onto the plaque from the radiometer 

itself. The radiometer must be held above the plaque at a height that is sufficiently small so that 

the plaque fills the whole field of view of the radiometer. The exact height depends on the 

radiometer and the size of the plaque. Shading from the radiometer (and any associated 

fixations) will be related to the zenith cosine-weighted solid angle of sky filled by the radiometer, 

as seen from any point on the reflectance plaque, and will be worse for radiometers held close 

to the plaque or that have a large diameter. 

• Secondly, while it is typical to mount irradiance sensors high on poles/masts (Section 2.2.2) and 

certainly above head height, measurements with a reflectance plaque are nearly always made 

much lower on a ship/platform for practical reasons: it is generally necessary to manipulate the 

radiometer (e.g., to then point to water and sky) and the plaque (e.g., to protect it when not 

measuring). Optical contamination from ship/platform sides, upper decks, masts, and even 

humans (often including those making the measurement) can be significant and difficult to 

quantify. 

The process of sky shading can be easily understood from fish-eye photographs taken vertically 

upwards at the location of a reflectance plaque – see figure 7. Any part of the upward hemisphere 

that is not sky represents the optical contamination of the measurement, and this contamination will 

be related to the zenith cosine-weighted solid angle of sky that is replaced by the object with near-

zenith objects contributing more than near-horizontal objects to the cosine integral of radiances. 

Measures to estimate the uncertainties associated with shading/reflection could include 

experiments made with irradiance sensors, with well-characterized cosine response, located (a) 

alongside the plaque, and (b) on a mast above the possible optical contamination and/or experiments 

combining optimal and non-optimal locations [50]. Such an experiment is reported by [51] for land 

remote sensing applications, but the issues are clearly the same as for water remote sensing. In that 

study, the height of the sensor above the plaque and the position of a human observer were varied. 

The shading (but not reflection) effects from radiometer and observer are analyzed in detail in the 

model simulations of [42], for different Sun zenith angles and aerosol conditions, with the conclusion 

that a plaque-viewing nadir angle of 40° and relative azimuth to the Sun of 90° is recommended when 

viewing a ~100% reflectance plaque. 

 

Figure 7. Location of fish-eye camera used for qualitative checking of shading of reflectance plaque, 

for comparison with Figure 4 for the direct measurement of 𝑬𝒅
𝟎+  using an irradiance sensor, as 

described in Section 2. 

3.2.5. Fouling 

The radiometer fore-optics and the reflectance plaque should be kept clean. 

When measurements made with a reflectance plaque are supervised, there should be negligible 

contamination of the radiance sensor fore-optics, provided that it is cleaned whenever necessary 

following the manufacturers’ recommendations. 

Figure 7. Location of fish-eye camera used for qualitative checking of shading of reflectance plaque, for
comparison with Figure 4 for the direct measurement of E0+

d using an irradiance sensor, as described in
Section 2.

Measures to estimate the uncertainties associated with shading/reflection could include
experiments made with irradiance sensors, with well-characterized cosine response, located (a)
alongside the plaque, and (b) on a mast above the possible optical contamination and/or experiments
combining optimal and non-optimal locations [50]. Such an experiment is reported by [51] for land
remote sensing applications, but the issues are clearly the same as for water remote sensing. In that
study, the height of the sensor above the plaque and the position of a human observer were varied.
The shading (but not reflection) effects from radiometer and observer are analyzed in detail in the
model simulations of [42], for different Sun zenith angles and aerosol conditions, with the conclusion
that a plaque-viewing nadir angle of 40◦ and relative azimuth to the Sun of 90◦ is recommended when
viewing a ~100% reflectance plaque.

3.2.5. Fouling

The radiometer fore-optics and the reflectance plaque should be kept clean.
When measurements made with a reflectance plaque are supervised, there should be negligible

contamination of the radiance sensor fore-optics, provided that it is cleaned whenever necessary
following the manufacturers’ recommendations.

Optical contamination of the plaque itself may be a significant problem because of the atmospheric
deposition of particles (which may embed within the structure of some diffuser materials) of both
natural and ship-related origin, marks from contact with any objects including materials used to protect
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the plaque during storage, etc. For example, it is recommended to keep plaques away from plastics
and hydrocarbons (diesel fumes) and to build a storage box that holds the plaque fixed in a way such
that the reflective surface is not in contact with anything. Obviously, humans, especially those with
greasy fingers, should not touch the diffusive surface itself. The cleaning of dirty plaques is, of course,
recommended, but should be accompanied by recalibration or pre/post-cleaning calibration checks.

In addition to optical contamination, plaques may change naturally from photodegradation
processes related to ultraviolet exposure. For example, the reflectivity of Spectralon™, a proprietary
form of sintered polytetrafluoroethylene (PTFE) produced by Labsphere Inc., USA, and used for
both spaceborne calibration diffusers and many ground-based measurements, may change at short
wavelengths because of absorption from organic impurities [52,53], which can only be removed by
vacuum baking. The careful handling and storage of plaques is required to limit such degradation.

The uncertainty estimate related to fouling can be validated by comparing post-deployment
calibrations before and after cleaning a plaque.

3.2.6. Fast Natural Fluctuations

Measurements should be used only during periods of stable illumination.
Considerations and uncertainties associated with fast natural fluctuations of E0+

d over a typical
measurement time scale (~1 min to 10 min) are identical to those already discussed in Section 2.2.4,
except that the asynchronicity of E0+

d and Lw measurements is inevitable for this method. In the latter
context, replicate measurements, e.g., E0+

d before and after Lw, can be used.

3.2.7. Bidirectional Reflectance of Plaques

The bidirectional reflectance of the plaque should be known.
In general, a plaque calibration is made for unidirectional illumination (typically 8◦) and with

hemispherical collection, using an integrating sphere, which is termed “8/h” calibration. Whereas the
cosine response of irradiance sensors must be considered for the direct measurement of E0+

d (Section 2),
the bidirectional reflectance of a plaque (from all illuminating directions to the single viewing direction)
must be considered in the uncertainty estimate for the reflectance plaque method. This data is reported
in some cases for typical white Spectralon™ plaques [53] and for grey Spectralon™ plaques [42,54],
but they may be unknown for other materials, including grey cards. A full characterization of the
optical properties of a plaque will include polarization sensitivity in the calibration process [55].
The full four-dimensional and reciprocal Mueller matrix bidirectional reflectance distribution function
of sintered polytetrafluoroethylene is reported at four wavelengths in [56]. The uncertainty associated
with the imperfect Lambertian response of a plaque can be validated by comparison, for a range of Sun
zenith angles, with a zenith-pointing irradiance sensor, if the latter has a sufficiently characterized
cosine response and is associated with a full uncertainty analysis.

3.3. Variants on the Method for Measurement of E0+
d Using a Downward-Pointing Radiance Sensor and a

Reflectance Plaque

Multiple measurements can be made with different plaques [18], e.g., of different reflectivity, to
reduce/validate the uncertainties associated with individual plaques (calibration, optical contamination/

degradation, bidirectionality, etc.).
Although not used for the measurement of E0+

d as such, it is interesting to note the use of a “blue
tile” reported by B.C. Johnson in Section 7.10 of [18]. This specially-manufactured reflectance plaque
has spectral properties similar to those of blue water, and so provides an intercomparison target,
which allows the testing of some aspects of above-water Lw protocols with some aspects of radiometer
characterization, such as straylight.
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4. Estimation of E0+
d

from Direct Sunphotometry and a Clear Sky Atmospheric Model

As an alternative to the direct measurement of E0+
d using a vertically-pointing irradiance sensor as

described in Section 2, it is possible to estimate aerosol optical thickness by measuring the direct Sun
radiance with a sunphotometer and estimate the total atmospheric transmittance with this and other
inputs—see Figure 8. This method was originally developed for satellite validation measurements
using the hand-held SIMBAD(A) radiometer [57], and has the interesting feature for satellite validation
studies of providing more information on atmospheric parameters than just the E0+

d measurement
described in Sections 2 and 3. In the hand-held SIMBAD(A) protocol, only aerosol optical thickness is
measured, but for automated Sun/sky radiometers, such as those of the AERONET-OC network [26]
with many other pointing scenarios, many extra atmospheric parameters can be estimated, including
aerosol size distribution and phase function [58].
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Figure 8. Schematic of direct Sun measurement for the estimation of E0+
d .

This method was described in the NASA Ocean Optics Protocols [46] as above-water radiometry
“Method 3”, in combination with measurements of water-leaving radiance using a vertical polarizer,
as implemented for the SIMBAD(A) radiometer. However, this method for estimating E0+

d may be
combined with different methods for estimating Lw, e.g., above-water methods without a vertical
polarizer, and so is described here as a generic method for estimating E0+

d .
The pointing accuracy required for direct Sun measurements generally requires a very stable

platform, such as a fixed offshore structure as in the AERONET-OC protocol [26], for unsupervised
measurements, or can be achieved by a hand-held sunphotometer, e.g., SIMBAD(A) radiometer [57].
However, the feasibility of making direct Sun measurements from a moving platform has been
demonstrated for an airborne radiometer [59], so it is conceivable that such measurements may be
made in the future from structures with some movement, e.g., buoys..

4.1. Measurement Equation

The full measurement equations for this method are described in [57] using a notation typical for
atmospheric radiative transfer studies, which does not explicitly mention E0+

d . For compatibility with
the rest of this review, these equations are rewritten here in a form that facilitates the identification of
E0+

d itself.
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Thus, the total (direct and diffuse) downward (Sun to water) atmospheric transmittance, T0, is
defined by:

T0 =
E0+

d

ETOA
d

(5)

and the downwelling irradiance at Top of Atmosphere, ETOA
d , is estimated from:

ETOA
d = F0Cosϑ0

(
d0

d

)2

(6)

where F0 is the extraterrestrial solar irradiance for mean Sun–Earth distance d0, e.g., tabulated by [60],
ϑ0 is the Sun zenith angle, and d is the Sun–Earth distance at the time of the measurement, which can
be easily calculated from position and date/time using earth orbital models.

Combining Equations (5) and (6) gives:

E0+
d = T0F0Cosϑ0

(
d0

d

)2

(7)

T0 is estimated using a clear sky radiative transfer model, e.g., [61], which takes as input vertically
integrated ozone amounts (obtained from extraneous data such as Total Ozone Mapping Scanner
satellite data and/or meteorological models or climatologies), ϑ0, surface atmospheric pressure (which
influences Rayleigh optical thickness and may be obtained from simultaneous surface measurements
or from appropriate meteorological models), and aerosol optical thickness, τa(λ)—see Equation (7)
of [57]. The impact of other absorbing gases and absorbing aerosols and other parameters such as
surface reflectance may be included in the atmospheric radiative transfer model, if necessary.

In the estimation of T0, the effects of multiple scattering from surface to atmosphere back to
surface are generally neglected. These effects can be important over reflective waters and nearby land,
especially at short wavelengths, where the spherical albedo of the atmosphere becomes large; for a
more complete treatment, see [6].

The aerosol optical thickness τa(λ) is deduced from direct Sun measurements taking account of
sunphotometer calibration, Earth–Sun distance variation d/d0, Sun zenith angle ϑ0, and including
corrections for molecular scattering and gaseous absorption, which is considered to be mainly due to
ozone—see Section 4.1 of [57], including Equations (5) and (6). In theory, sky radiance information
(in the principal plane and almucantar, especially aureole), in addition to direct sunlight measurements,
could be used to better determine the aerosol type, and therefore better estimate the atmospheric
transmittance. In practice, only aerosol optical thickness is used to estimate atmospheric transmittance
from AERONET-OC and SIMBAD(A) measurements, because the anisotropy factor of the aerosol
phase function is quite constant for most aerosol models [62]. However, when aerosols are absorbing,
the impact of absorption can be significant [63].

The Ångström exponent for the spectral variation of τa(λ) can also be computed, and in the
SIMBAD protocol it is used in the skyglint correction for Lw, but is not needed for the computation
of E0+

d .
The calculation of T0 required for this E0+

d measurement protocol is comparable to the computation
of E0+

d made in satellite data processing software, e.g., SeaDAS.

4.2. Protocol-Dependent Sources of Uncertainty

In addition to the radiometer-related sources of uncertainty that arise from imperfections in the
radiometers themselves, including the Bouguer–Langley calibration, the measurement of above-water
downwelling irradiance from direct Sun radiometry and atmospheric modeling has a number of
sources of uncertainty relating to the measurement equation and deployment conditions. These
protocol-related sources of uncertainty are described in Sections 4.2.1–4.2.6.
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4.2.1. Atmospheric Radiative Transfer Model

The atmospheric radiative transfer model and its inputs (extraterrestrial solar irradiance,
absorbing gases, atmospheric pressure, Sun zenith angle, etc.) should be accurate.

The atmospheric radiative transfer model used to estimate T0 has both intrinsic uncertainties,
which are associated with models and simplifications of many complex atmospheric optical
processes, as well as uncertainties in the various input parameters (aerosol parameters, absorbing
gas amounts, atmospheric pressure, Sun zenith angle, etc.) and which propagate through the model.
The extraterrestrial solar irradiance also includes some uncertainty; ideally, the same solar irradiance
data will be used for in situ and satellite data processing.

The estimation of uncertainty from all these sources is complex and is described in detail in
Section 5 of [57], except for the adjacency effect of multiple surface–atmosphere scattering, which was
mentioned in Section 4.1.

An intercomparison of atmospheric radiative transfer codes and discussion of issues can be found
in [64].

4.2.2. Sky Conditions

The atmosphere should be cloud-free and horizontally homogeneous.
The atmospheric radiative transfer model used to estimate T0 assumes that the atmosphere is

horizontally homogeneous and, in particular, contains no clouds. This assumption is valid for the
design conditions of clear sky satellite validation, but significant and difficult-to-estimate uncertainties
will arise if this assumption is violated, e.g., for a partially cloudy sky. In the SIMBAD(A) and
AERONET-OC protocols, automated quality control steps identify when the direct Sun measurement
is affected by clouds or haze near the Sun, and remove such data from processing. In the SIMBAD(A)
protocol, the human observer can also identify suboptimal conditions, such as clouds somewhere else
in the sky, and quality flag such data accordingly.

4.2.3. Pointing Effects

The sensor FOV should contain entirely the Sun and be centered on the Sun.
While high pointing accuracy is crucial for direct Sun measurements, this can be well achieved

by both robotic and handheld systems allowing for fine pointing adjustments. The field of view of
sunphotometers is by design small, e.g., 1◦ to 3◦, and typically not much larger than the Sun’s linear
angle of about 0.53◦, to minimize the contribution of atmospheric scattering yet completely cover the
Sun disk.

Inadequate pointing accuracy can be identified from replicate measurements and/or very high
apparent optical thickness and corresponding measurements removed during quality control steps.

Uncertainties associated with direct Sun pointing may be grouped with other uncertainties in the
measurement of aerosol optical thickness.

4.2.4. Shading

The direct path from Sun to sensor should be free of obstructions.
Shading of the direct Sun measurement by the presence of solid objects is generally not a problem

because—in contrast to the direct measurement of E0+
d with an irradiance sensor where the whole

upward hemisphere should be free of obstructions—for direct Sun measurements, only the direct Sun
path must be free of obstructions. For unsupervised measurements, most structure shading will be very
obvious in direct Sun measurements, and can be automatically removed either a priori, by defining a
range of acceptable viewing azimuth angles, or a posteriori, by eliminating very low radiance values.
Minor obstructions such as wires and cables potentially in the field of view should be eliminated
during deployment, and other occasional obstructions (birds, humans) can be monitored by video
camera. For supervised measurements, any structural shading can easily be identified and avoided.
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On some platforms, there may be a risk of optical contamination from atmospheric steam or
smoke emissions and other exhaust gases (air conditioning, etc.).

4.2.5. Fouling

The sensor fore-optics should be clean.
Sunphotometers are always associated with a pointing mechanism that is either robotic or human,

and so can generally be protected from most fouling mechanisms when not measuring.
Nevertheless, some fouling of the fore-optics may occur for long-term unsupervised deployments

because of sea spray, rain droplets, and/or spiders and insects, etc.
Major fouling events can be identified by time series analysis of data and/or video camera imagery.
The uncertainty estimate related to fouling can be validated by comparing post-deployment

calibrations before and after cleaning [26].

4.2.6. Fast Natural Fluctuations

Measurements should be used only during periods of stable illumination.
This method for E0+

d can only be used in ideal clear sky conditions, where fast natural fluctuations
of E0+

d do not occur. The latter can easily be detected by replicate measurements, and the corresponding
measurement sequence can be eliminated.

4.3. Variants on the Method of Measurement of E0+
d from Direct Sunphotometry and a Clear Sky

Atmospheric Model

As mentioned previously, this protocol can be used with human or robotic pointing systems.
Since this protocol has very different assumptions and very different sources of uncertainty from the
protocol using a vertically-pointing irradiance sensor (Section 2), there is significant added value to
combine the sunphotometric estimation of E0+

d with the direct measurement of E0+
d using an irradiance

sensor, as proposed in the OSPREY system [65].

5. Estimation of E0+
d

from Underwater Measurements

It is common for underwater radiometric measurements of the profile with depth, z, of nadir
upwelling radiance, Lun(z), to be accompanied by underwater measurements of downwelling irradiance,
Ed(z). Historically, E0+

d was often estimated from these underwater measurements by extrapolation
to just beneath the surface and transmission across the air–water interface. However, the temporal
variability of Ed(z) associated with wave focusing/defocusing is particularly difficult to remove, and
this method for estimating E0+

d has been replaced by the direct above-water E0+
d measurement, and

will not be discussed further in this review. A detailed description of protocols for measuring Ed(z),
the spectral diffuse attenuation coefficient of downwelling irradiance, Kd(λ, z), and, if considered
useful, E0+

d , can be found in the NASA Ocean Optics protocols [66].
Outside the satellite validation context, underwater measurements of Ed(z) are still relevant

for the estimation of optically and biologically important parameters such as Kd(λ, z), and related
parameters such as euphotic depth.

6. Conclusions

6.1. Summary of the State of the Art

This paper reviews the current state of the art of protocols for the measurement of downwelling
irradiance for the validation of satellite remote sensing data over water. In the FRM context, particular
attention is paid to the protocol-related elements of the measurement uncertainty budget. These aspects
of the protocol are discussed with reference to documented studies, and guidelines are provided on
how to estimate such uncertainties, e.g., design of experiments and/or model studies.
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Three basic measurement protocols have been identified:

• Direct above-water measurement of E0+
d with an upward pointing irradiance sensor

• Estimation of E0+
d using a downward pointing radiance sensor and a reflective plaque

• Estimation of E0+
d from direct sunphotometry and a clear sky atmospheric model

A fourth measurement method that was previously used, estimating E0+
d from the underwater

vertical profiles of Ed(z), is now considered inappropriate, and is no longer recommended. This method
remains relevant for the measurement of Ed(z) and related parameters such as diffuse attenuation
coefficient, but not E0+

d .
The main body of this paper is summarized in Table 1, which lists the equipment needed,

method variants, and any special issues, and in Table 2. The latter summarizes the components of the
uncertainty estimation giving ideal conditions, recommendations for best practice, and approaches to
estimating uncertainty, but excludes any uncertainties arising from radiometer imperfections, such
as calibration, thermal sensitivity, spectral response (straylight/out of band effects), non-linearity,
and angular (cosine) response.

Table 1. Summary of the three measurement methods as regards equipment, method variants, and
special issues.

Upward-Pointing
Irradiance Sensor

Radiance Sensor and
Reflective Plaque Direct Sunphotometry

Equipment
Irradiance sensor (cosine

response)
Inclinometer

Radiance sensor
Reflective plaque

Inclinometer

Sunphotometer
(radiance) sensor

Pointing mechanism
Atmosphere radiative

transfer model

Variants

Surfacing of underwater
drifting floats.

Shadowband for
diffuse/direct.

White/grey plaques Hand-held or robotic
pointing

Other notes

Uncalibrated radiometers?
(see Section 3.1.1)

Plaque viewing nadir angle?
(see Section 3.1.2)

For the “irradiance sensor” and the “reflectance plaque” methods, the main challenge is to deploy
the radiometer/plaque sufficiently high enough to avoid any shading. In this context, “shading” does
not only refer to the obvious shadowing of direct Sun, but also refers to the difference between the
unobstructed hemisphere of Sun and sky radiance and the reality of measuring in situations where the
radiometer/plaque are not higher than all the other structures. For the “irradiance sensor” method, it is
also a major challenge to have a sensor that is sufficiently well-designed and well-characterized as
regards angular (cosine) response [28].
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Table 2. Summary of the three measurement methods, including components that must be considered
for the uncertainty estimation. BRDF: bidirectional reflectance distribution functions; I = Ideal conditions;
R = Recommendations; U = Uncertainty estimation; Cal = calibration; FOV = field of view; AOT =

aerosol optical thickness; r/t = radiative transfer; S.D. = standard deviation; N/A = Not Applicable.
See text for more details on each topic.

Method Upward-Pointing
Irradiance Sensor

Radiance Sensor and
Reflective Plaque Direct Sunphotometry

Plaque cal and
characterization N/A

I: BRDF-calibrated,
homogeneous plaque fills
FOV
R: Tests to check FOV
U: Plaque certificate
including BRDF,
experiments for
homogeneity and height
above plaque/FOV

N/A

Tilt/pointing

I: Deploy vertical
R: Monitor with
inclinometer
U: Modeling/experiments

I: Deploy horizontal
R: Monitor with inclinometer
U: Modeling/experiments

I: Sensor FOV contains and
centered on Sun
R: Small FOV, accurate
pointing, check AOT
U: Via estimation of AOT

Superstructure shading

I: Deploy above all
structures
R: Use mast and fish-eye
photos
U: Experiments (different
heights/locations) and
modeling

I: Deploy above all structures
(except radiometer)
R: Use mast and fish-eye
photos
U: Experiments (different
heights/locations) and
modeling

I: Clear radiometer–direct Sun
path
R: Check with video
surveillance and data QC
U: N/A (if not rejected)

Fouling

I: Keep fore-optics clean
R: Inspect/clean/protect,
monitor with portable cal
devices
U: Pre-/post-cleaning cal of
radiometer

I: Keep radiometer
fore-optics and plaque clean
R: Inspect/clean/protect,
monitor radiometer with
portable cal devices
U: Pre-/post-cleaning cals for
radiometer and plaque

I: Keep fore-optics clean
R: Inspect/clean/protect
U: Pre-/post-cleaning cals

Fast natural fluctuations

I: Reject if unstable
illumination
R: Compare replicates/time
series
U: S.D. of accepted
measurements

I: Reject if unstable
illumination
R: Compare replicates/time
series
U: S.D. of accepted
measurements

I: Reject if unstable
illumination
R: Compare replicates/time
series
U: S.D. of accepted
measurements

Sky conditions and
atmospheric r/t model N/A N/A

I: Perfectly cloud-free sky,
horizontally homogeneous
atmosphere and surface.
Perfect r/t model and inputs
R: Reject if clouds detected.
Intercompare r/t models, check
inputs
U: Modeling. See Section 4.2.1

6.2. Irradiance Sensor or Reflectance Plaque?

The preparation of this review stimulated considerable discussion within the community on the
pros/cons of the reflectance plaque method as compared to the irradiance sensor method in addition
to the question of whether the reflectance plaque method radiance sensor needs to be calibrated
(see Section 3.1.1). When correctly applied, the reflectance plaque method can clearly meet the criteria
expected of an FRM. However, in practice, this method has often been associated with less rigorous
implementation. Specifically, recognizing that the reflectance plaque is performing the same function
as the fore-optics of an irradiance sensor, which collects light from the upward hemisphere according
to a zenith cosine weighting and directs that light to a photodetector, it is necessary that:
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1. There be no humans above the level of the reflectance plaque/irradiance sensor (and thereby
affecting the sky radiance contributing to E0+

d in a way that is highly variable and essentially not
quantifiable in an uncertainty estimate),

2. The reflectance plaque/irradiance sensor be mounted as high as possible on the ship/platform,
typically higher than any superstructure elements with significant solid angle as viewed from the
plaque/sensor,

3. The reflectance plaque/irradiance sensor be mounted on a fixed structure, not hand-held,
and associated with an inclinometer allowing the estimation of uncertainties associated with
non-horizontal/vertical measurements,

4. The measurements made using the reflective plaque/irradiance sensor be supported by
experiments and/or simulations to estimate the measurement uncertainties associated with
any superstructure shading of the plaque/irradiance sensor.

6.3. Future Perspectives

In contrast to the more difficult Lw measurement, where there has been considerable evolution
and diversity since the publication of the NASA Ocean Optics Protocols [20], measurement protocols
for E0+

d seem now to be quite mature and stable.
Future improvements to E0+

d measurements are expected to come from the following developments:

• Improvements in the design and usage of calibration monitoring devices, which can be used
in the field, are likely to improve the identification of fore-optics fouling and radiometer
sensitivity changes.

• Model simulations of the 3D light field and experiments for deployments with structures above
the irradiance sensor/reflectance plaque are likely to improve estimations of related uncertainties.

• Improvements in the stability and reduction in the cost of telescopic masts may reduce
superstructure shading effects.

• Reduction in the cost of pointing systems, thanks to the video camera surveillance industry, should
improve the protection (“parking”) of irradiance sensors when not in use, and thus reduce fouling
for long-term deployments.

• Improvements in automatic gimballing systems might reduce the tilt effects for the irradiance
sensor method.

• Greater use of full sky imaging cameras, whether calibrated (expensive) or not (inexpensive), will
allow the better identification of suboptimal measurement conditions.

As regards the future for the validation of water reflectance more generally:

• The tendency to move to highly automated systems with long-term, e.g., one year, essentially
maintenance-free deployments is likely to significantly improve the quantity of data available
for validation.

• The advent of operational satellite missions such as NPP/VIIRS, Sentinel-3/OLCI, Sentinel-2/MSI,
and Landsat-8/OLI with the need for a guaranteed long-term validated data stream will increase
the need for FRM.

• The huge increase in optical satellite missions used for aquatic remote sensing will also increase
the need for highly automated measurement systems.

• As regards the needs of the validation community, it is recommended to:
• Update this review, e.g., on a 10-year time frame, to take account of developments in the protocols,

particularly in the estimation of uncertainties. Such an update is best preceded by community
discussion at an international workshop.

• Organize regular, e.g., on a two-year time frame, intercomparison exercises to ensure that
measurement protocols and scientists remain state of the art (as required by the FRM context).
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Although not targeted by this review, it is possible that the considerations developed here
may be useful for other applications where E0+

d measurements are needed, including the validation
of satellite-derived photosynthetically available radiation products [67], the validation of surface
reflectance over land, and the monitoring of solar irradiance for the solar energy industry, for agriculture,
for the building industry, for the estimation of the Earth’s radiation budget, and absorbing atmospheric
gases, etc.
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