
doi: 10.1016/j.procs.2016.05.362 

Running simultaneous Kepler sessions for the

parallelization of parametric scans and optimization studies

applied to complex workflows
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Abstract

In this paper we present an approach taken to run multiple Kepler sessions at the same time.
This kind of execution is one of the requirements for Integrated Tokamak Modelling platform
developed by the Nuclear Fusion community within the context of EUROFusion project[2]. The
platform is unique and original: it entails the development of a comprehensive and completely
generic tokamak simulator including both the physics and the machine, which can be applied for
any fusion device. All components are linked inside workflows. This approach allows complex
coupling of various algorithms while at the same time provides consistency. Workflows are
composed of Kepler and Ptolemy II elements as well as set of the native libraries written in
various languages (Fortran, C, C++). In addition to that, there are Python based components
that are used for visualization of results as well as for pre/post processing. At the bottom of
all these components there is a database layer that may vary between software releases, and
require different version of access libraries. The community is using shared virtual research
environment to prepare and execute workflows. All these constraints make running multiple
Kepler sessions really challenging. However, ability to run numerous sessions in parallel is a
must - to reduce computation time and to make it possible to run released codes while working
with new software at the same time. In this paper we present our approach to solve this issue
and examples that show its correctness.
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1 Introduction

Integrated modelling efforts for ITER[1] experiment focuse currently on the assessment on the
validation of comprehensive models against present facilities results. In view of supporting
ITER operation, modelling tools are necessary, both for pulse validation and plasma control.
The Nuclear Fusion community has developed for this purpose the software infrastructure
framework for integrated modelling activities as well as a validated suite of simulation codes,
platform that is currently operated under EUROFusion1 project.

EUROfusion strategy includes the integration of the most advanced EU fusion codes into
a centrally maintained suite of Integrated Modelling tools. Kepler plays major role in this
development as it serves as a basis for integration of all the components and codes developed
as part of the project.2 The work follow up the Integrated Tokamak Modelling Task Force that
operated under EFDA from 2004 until 2013.

Within EUROFusion WPCD, Kepler is used as a basis for linking various components that
are used in numerical computations. Each of these components can be developed in program-
ming language that is supported by ITM (Integrated Tokamak Modelling) platform: C/C++,
Fortran, Java, Matlab, Python. All these components (developed separately) are linked to-
gether to form workflows performing numerical computations. Different workflows focus on
different aspects of plasma simulation. Thanks to using Kepler, each component (numerical
code) can be wrapped by Java code and exposed as Kepler actor. This way, regardless of the
workflow type, each actor (numerical code) can be easily reused without too much effort.

After workflows are released, there are two main ways of using them. First one, is to use
released workflow for actual simulations, second one is to optimize it. These two actions require
two, different, installations of Kepler. Both should be able to run at the same time. Apart from
that, there is another requirement related to running multiple Kepler sessions at the same time,
that is batch execution[10]. In order to reduce computation time one typically runs numerous
Kepler sessions running the same workflow with different parameters (see Figure 1).

This way, it is possible to run multiple simulations at the same time. However, this is not
an easy task to achieve when we talk about Kepler being run at batch nodes in multi user
environment.

Current developments are influenced by numerous factors that affect execution of Kepler in
parallel. These factors are either result of project’s specifics or are based on internal Kepler’s
limitations. We will discuss these factors in next section.

2 Limitations of Kepler’s mechanisms

Kepler itself provides solutions for running multiple Kepler instances at the same time. How-
ever, these solutions are not fully applicable in case of EUROfusion based developments. We are

1https://www.euro-fusion.org
2http://portal.efda-itm.eu/itm/portal/
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Figure 1: Running multiple Keplers in parallel

dealing with very specific architecture where numerous components have their impact on work-
flow execution. In addition to that we work in multi-user and multi-configuration environment
(different Kepler versions and different set of components executed by workflows).

There are four, most important factors having influence on parallel execution of Kepler:

• multi-user environment,

• different Kepler installations,

• version of modules being used,

• size of the workflows.

These factors are mostly related to Kepler’s internal cache. Kepler’s cache improves man-
agement of workflows and allows to reduce loading time of the workflow itself. Cached data are
stored in the internal database that is stored for each user as a separate database file located
inside user’s home directory. Running multiple Kepler sessions at the same time means that
each Kepler session should have its own means of accessing database file (cache). In case of
HSQLDB3 database (used by Kepler), it is not possible unless it is started in, so called, server
mode4. This way, it is possible to run one database server and allow different Kepler instances
access the data. It is fairly simple to use Kepler is this kind of execution mode, however, it’s
not suitable for multi user environments.

We will discuss these limitations in four, different contextes.

2.1 Multi user environment

In case of EUROfusion IM platform, all users work at the same front end machines of, so called,
Gateway. It means, physically, all applications are run at the same machines. If we want to
use HSQLDB in server mode5,6, it means, each user has to have dedicated range of ports just
for him.

3http://hsqldb.org
4http://hsqldb.org/doc/2.0/guide/running-chapt.html#rgc_server_modes
5https://kepler-project.org/developers/reference/what-happens-when-kepler-starts-up
6https://kepler-project.org/developers/reference/accessing-hsql
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This approach can be treated as a solution, however it is hard to maintain. It requires
handling proper values of ports for all users (we want each user to have his own cache). In
addition to that, it might be impossible to use this approach at some batch systems where
security policy puts hard constraints on port ranges available for users. Eventually, we cannot
allow sharing cache database due to number of workflows and configurations available. Users
may use actors with different version numbers, they may use actors that use different database
releases (with different structure) and, eventually, they may use completely different set of
actors (different workflows). There is yet another issue with this approach. When started in
server mode, it is not possible to run multiple instances of Kepler by single user. And that is
exactly what we want to do.

2.2 Different Kepler installations

If we decide to use file based cache system, HSQLDB database is run in standalone mode, we
do not have to allocate TCP ports for users. However, this approach triggers some issues as
well. Development of workflows is a process. It means part of codes are ready for release (and
can be used for simulations) while at the same time new codes are developed and added to
platform. Users want to use Kepler in two flavours. Released version - for installations that
contain stable codes, development version - that is still unstable and has to be tested. This
leads to issues related to internal HSQLDB locking - see Figure 2.

Figure 2: Different schemas for workflow execution

In this scenario, each Kepler instance tries to get exclusive access to cache. Clearly, only
one instance will be able to achieve that. All other Kepler sessions will fail.

2.3 Different modules’ versions

Yet another approach is to use single Kepler installation and load multiple workflows. In
this scenario, there is a single Kepler instance that loads multiple workflows. This scenario is
depicted on Figure 2. However, this solution is not suitable for batch execution where Kepler is
started in non-gui based mode. Another issue here is that in case of ETS (European Transport
Solver) workflows (described in Section 4.1) we may run this workflow with different set of
components.
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2.4 Size of the workflow

It is possible to disable internal Kepler’s cache at all (-runwf -nocache -nogui). This way,
user is not forced to mangle Kepler’s locations each time it is required to run Kepler in batch
mode. However, there is yet another problem - size of the workflow. Workflow developed within
EUROfusion are quite huge in size. They consist of thousands of components (actors, composite
actors, connections, etc.). Typical ETS workflow consists of 460 composite actors and is nine
levels deep. Parsing workflow file itself is quite time consuming task. In case Kepler is started
without cache, we face huge increase of loading time (see Table 1)

ETS workflow (simplified) cache no cache
execution time [s] 120 420
loading time [s] 50 320

Table 1: Difference in execution/loading time with/without Kepler’s cache

The reason for the difference here lays in parsing mechanism of workflow content. In case
of executing Kepler without cache, it spends most of its time (while loading workflow) inside
ptolemy.moml.MoMLParser. loadFileInContext() - calculations . In case of long last-
ing workflows this is not such an issue, in case of short computations, this time may heavily
impact execution time.

3 Solution

To solve issues mentioned in section 2.1 we have decided to create artificial $HOME structure
for each Kepler being run in batch queue. This solution is depicted on Figure 3. This way, all
required directories are replicated for each and every Kepler instance. These directories are:
.kepler, .ptolemyII, KeplerData, redirect (used for redirecting non GUI based output). We also
link kepler to installed Kepler version of user and we provide additional system information gen-
erated during job execution (environment - for all environment related information, kepler.log
- logs generated by Kepler). For our specific case we also create directory public, it is used for
data input/output. All workflow related data are stored inside this directory and are shared
over all Kepler instances.

Figure 3: Each Kepler is executed inside dedicated $HOME directory
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After structures are ready, all Kepler processes are started as serial jobs via mpirun com-
mand. This way, we get propper distribution of all processes over requested resources (let it be
4, 16, 32, 64, 128 CPUs). We have successfully scaled to 128 CPUs while running production
ready workflows (e.g. SYCOMORE).

In order to pass the location of new $HOME structure we use two solutions. First one is
based on system settings. We modify $HOME variable before running code (Kepler). Another
approach is to pass user.home property directly into JVM. This way, only JVM is altered by
settings.

Process of submission is divided into two parts: generation of input script (this script de-
pends on the Resource Manager being used), execution of task at batch nodes (submission
of prepared script). At the time of writing, we have been able to use this approach for two,
different Resource Managers: Load Leveler and SUN Grid Engine. Both cases require adap-
tation to proper submission format, however, thanks to modular architecture of the solution
this is not a drawback. All we have to do to adapt script for a given submission system is to
prepare templates that will be altered by user’s parameters (e.g. name of the queue, system
requirements, nodes reservation, etc.). Schema of the job submission is depicted on Figure 4.

3.1 Task submission

Figure 4: Steps taken to run Kepler inside batch queue

Whole process takes part in two, separate areas: user space and execution environment.
User space is the place where user can alter parameters of batch job. It is possible to set
predefined parameters, or even change submission script completely. It depends on specifics of
the job. Most, typical, workflows can be run using default, predefined set of scripts. However,
in case of specific requirements, it is possible to alter each part of the execution chain. Jobs
can be submitted in two flavours: synchronous, asynchronous. In case of synchronous jobs,
submission scripts executed within user’s space wait till job is done, in case of asynchronous
jobs, submission scripts simply start job and quit immediately.

3.2 Limitations

Solution we have described above has some limitations. It makes strong assumption on what is
available inside $HOME during Kepler execution. It means that before running workflow we
have to make sure all locations required during execution are provided. Providing new working
space for $HOME directory has some advantages as well as disadvantages. An advantage is
application wide setting that is visible in each and every part of the code (let it be executable
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called from JVM, code called via JNI or call to System.get(”HOME”)). Disadvantage of this
solution is related to internals of legacy code. In case there is a strong assumption in the code, in
terms of location of files, we have to make sure they are properly linked in the artificial $HOME
structure. There is yet another issue that can be solved using modified $HOME variable.
In some batch queues (with shared HOME volumes) it might be that there are dedicated
environment variables that refer to $HOME in case we are at frontnodes or batchnodes. In
that case, if one wants to have universal binary that works fine in both environments it is
required to alter HOME variable.

As we already mentioned, another approach is to change HOME location directly inside
Java VM. This is possible thanks to user.home property that can be passed to JVM via -D
argument.

java -Duser.home=$NEW_HOME_LOCATION JavaApplication

This approach is also suitable in many cases, however, it may fail in case there are references
to $HOME variable directly in the code. This might be the case for legacy code. Of course,
we cannot prevent any possible misusage of environment variables and we cannot assure that
user’s code will not base its execution on user.home or HOME variables.

3.3 mpirun based execution and its limitations

In solution provided we use mpirun in order to properly distribute serial applications over
reserved nodes. This approach, however, has some limitations. In case of workflows that run
mpirun themselves, this solution will not work correctly. This is related to doubled initialization
of MPIWORLD . It is not possible to run mpirun from within mpirun.

3.4 Working with various grid engines

Current solution is somehow bound to grid engine it operates on. This is dictated by number
of factors: command line applications user for job management, submission script layout, en-
vironment variables being used by given grid engine. In general, we have to pay attention to
its specifics. These elements play a role in the solution and we cannot use current approach
as a general solution for all cases. Before porting it to new grid engine, we have to make sure
what elements are available for us and how should we alter current solution to get it fully
functional in new environment. Fortunately, thanks to modular approach of the solution this
is just a matter of replacing parts of the scripts with proper code. We have been able to port
this solution, initially developed for SUN Grid Engine, to Load Leveler without much effort.

4 Applications

This approach was successfully applied to various workflows within various environments.
We have been able to adapt this solution for EUROfusion7 developments (workflows): ETS,
IMP5HCD (Heating, Current Drive and Fast Particles), SYCOMORE. In addition to that we
have been able to port the solution into JET infrastructure where we have been able to use this
approach to submit ETS workflow into queue system deployed at JET (Joint European Torus).

7https://www.euro-fusion.org
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4.1 ETS

Development of the operating scenario for fusion reactor requires integrated modelling address-
ing the critical reactor issues: plasma heating and fuelling, radiation from impurities, MHD
stability, etc. Since all these issues are inter-linked, to demonstrate a successful operational
scenario, the relevant physics need to be included in a single simulation. Thus, the environ-
ment used for scenario modelling should allow for the integration of multiple codes and physics
modules into a single scientific workflow. The European Transport Simulator (ETS) [9] is an
outstanding example of such an integrated workflow. The ETS workflow couples individual
physics modules e.g. calculating the plasma magnetic equilibrium, deposition (by auxiliary
heating systems) transport of energy and, impurity radiation and MHD. It also offers several
options of different fidelity for each physics component. Previously, ETS was verified against
state-of-the-art transport codes and used to analyze data from existing tokamaks. In this work,
it has been applied to study the possibility to control the plasma density in a reactor size
machine by means of multiple injections of frozen pellets composed of 50/50 mix deuterium-
tritium.

Simulations were performed for five different poloidal angles of injection position, each with
several pellet sizes and velocities.[4] To obtain results for various configurations and perform
calculations in parallel, each workflow was preset with given configuration and executed in
parallel with other workflows.

4.2 Sycomore

SYCOMORE is a modular system code for fusion reactor design. All the physics and technology
calculations are handled by a Kepler workflow[3]. Every run of the workflow gives a reactor
design point. The workflow is coupled to an external optimisation framework called Uranie.
This framework is used to sample a chosen set of input variables over a chosen range to assess
the sensitivity of the designs to these particular variables. Uranie can also be used to find
optimum design points: in this case, optimal input variables are searched following a figure of
merit and constraints. A typical example of an optimisation problem is the following: find the
smallest possible reactor with a minimum of 500 MW net electric power. A genetic algorithm is
used to carry out such an optimisation process. In either case (sampling or optimisation), the
SYCOMORE workflow has to be iterated a large number of times: from a few dozens iterations
for simple sampling runs to several 105 or even 106 iterations for multi-criterion optimisation
runs. Since every iteration of the workflow takes between 2s and 10s, it is therefore mandatory
to be able to run several of them in parallel to achieve reasonable run times.

SYCOMORE and Uranie use genetic algorithms to carry out optimisations. Therefore,
within a generation of the population generated by the algorithm, every iteration of the workflow
is independent. As a consequence, parallel scaling is very efficient. More details on a scaling
test can be found in the following paper: Coupling between a multi-physics workflow engine and
an optimisation framework [8].

4.3 IMP5HCD

Applying parallel based solution into IMP5HCD workflow allows to reduce computation time -
several, different cases, are run together. This is particularly useful in case one wants to verify
various combinations of actors being used in workflow. In case of IMP5HCD, parallel execution
was used for testing all the possible combinations between deposition codes and Fokker-Planck
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No of CPUs Wall clock time Teval
256 4 min 56 8.4 s
128 7 min 53 s 6.0 s
96 11 min 09 s 5.3 s
64 13 min 26 s 5.1 s
48 17 min 30 s 4.9 s
32 23 min 27 s 4.4 s
28 53 min 20 s 4.3 s
24 1 h 02 min 37 s 4.2 s
20 1 h 15 min 47 s 4.2 s
16 48 min 36 s 4.4 s
12 2 h 10 min 55 s 4.0 s
8 1 h 38 min 32 s 4.1 s
4 3 h 58 min 52 s 4.1 s

Table 2: Computation time. Process with rank 0 handles only data transfer. Teval is an
averaged time spent for one SYCOMORE evaluation per session.

codes. This calculations were done while benchmarking NBI within one of EUROfusion’s ac-
tivities. IMP5HCD workflow is partially based on Monte Carlo approach. This way, scalability
is quite efficient - 128 CPUs provides 128 faster computations [7, 5, 6].

5 Conclusions

Running applications in parallel can save reasonable amount of time. In our opinion, presented
solution elevates Kepler usage to the next level. We no longer use it as a workflow design and
serial execution tool, but rather, as platform for execution of numerous simulations at the same
time. We are sure that suggested solution provides users with new abilities when it comes to
Kepler’s utilisation. There are two, main areas where we find proposed solution to be very
efficient:

• parametric scan,

• task decomposition.

In case of parametric scan, workflows executed in Kepler perform computations using the
same input data set, but they use different parameters set. In here, we have multiple Keplers
running multiple workflows over the same data. This scenario is useful for all simulations where
we do some parameters based optimization (Figure 5). Second approach is useful in case we
are dealing with large input data set and we want to reduce computation time for this given
input. In this case, initial problem is sliced and each Kepler runs exactly the same workflow
but we provide different input data. Each workflow performs computations for a single slice
(Figure 5).

Parametric scans are based on running exactly the same workflow (in terms of its archi-
tecture) but we change values of parameters. At the moment, we use two approaches here:
altering XML file, passing parameters via command line. Both solutions have their limitations
(e.g. potential risk of breaking XML structure). In future we want to focus on Workflow Man-
ager module. This way, we hope to provide better support in terms of maintaining workflows
as well as allowing users to alter workflows with ease.

Running simultaneous, parallel, Kepler sessions Owsiak, P�lóciennik, Reux, Di Gallo
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Figure 5: Parametric scan and data decomposition based scenarios

When it comes to running the same workflow over different data, situation is very similar
to parametric scan based approach. In this case we still have to alter workflow a little bit. We
have to (at least) point to input and output that will be processed by each and every workflow.
In this case we also look forward for new releases of Workflow Manager.
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