168 research outputs found

    Evaluation of multiple variate selection methods from a biological perspective: a nutrigenomics case study

    Get PDF
    Genomics-based technologies produce large amounts of data. To interpret the results and identify the most important variates related to phenotypes of interest, various multivariate regression and variate selection methods are used. Although inspected for statistical performance, the relevance of multivariate models in interpreting biological data sets often remains elusive. We compare various multivariate regression and variate selection methods applied to a nutrigenomics data set in terms of performance, utility and biological interpretability. The studied data set comprised hepatic transcriptome (10,072 predictor variates) and plasma protein concentrations [2 dependent variates: Leptin (LEP) and Tissue inhibitor of metalloproteinase 1 (TIMP-1)] collected during a high-fat diet study in ApoE3Leiden mice. The multivariate regression methods used were: partial least squares “PLS”; a genetic algorithm-based multiple linear regression, “GA-MLR”; two least-angle shrinkage methods, “LASSO” and “ELASTIC NET”; and a variant of PLS that uses covariance-based variate selection, “CovProc.” Two methods of ranking the genes for Gene Set Enrichment Analysis (GSEA) were also investigated: either by their correlation with the protein data or by the stability of the PLS regression coefficients. The regression methods performed similarly, with CovProc and GA performing the best and worst, respectively (R-squared values based on “double cross-validation” predictions of 0.762 and 0.451 for LEP; and 0.701 and 0.482 for TIMP-1). CovProc, LASSO and ELASTIC NET all produced parsimonious regression models and consistently identified small subsets of variates, with high commonality between the methods. Comparison of the gene ranking approaches found a high degree of agreement, with PLS-based ranking finding fewer significant gene sets. We recommend the use of CovProc for variate selection, in tandem with univariate methods, and the use of correlation-based ranking for GSEA-like pathway analysis methods

    Cyclooxygenase-2 inhibitor blocks the production of West Nile virus-induced neuroinflammatory markers in astrocytes

    Get PDF
    Inflammatory immune responses triggered initially to clear West Nile virus (WNV) infection later become detrimental and contribute to the pathological processes such as blood–brain barrier (BBB) disruption and neuronal death, thus complicating WNV-associated encephalitis (WNVE). It has been demonstrated previously that WNV infection in astrocytes results in induction of multiple matrix metalloproteinases (MMPs), which mediate BBB disruption. Cyclooxygenase (COX) enzymes and their product, prostaglandin E2 (PGE2), modulate neuroinflammation and regulate the production of multiple inflammatory molecules including MMPs. Therefore, this study determined and characterized the pathophysiological consequences of the expression of COX enzymes in human brain cortical astrocytes (HBCAs) following WNV infection. Whilst COX-1 mRNA expression did not change, WNV infection significantly induced RNA and protein expression of COX-2 in HBCAs. Similarly, PGE2 production was also enhanced significantly in infected HBCAs and was blocked in the presence of the COX-2-specific inhibitor NS-398, thus suggesting that COX-2, and not COX-1, was the source of the increased PGE2. Treatment of infected HBCAs with NS-398 attenuated the expression of MMP-1, -3 and -9 in a dose-dependent manner. Similarly, expression of interleukin-1β, -6 and -8, which were markedly elevated in infected HBCAs, exhibited a significant reduction in their levels in the presence of NS-398. These results provide direct evidence that WNV-induced COX-2/PGE2 is involved in modulating the expression of multiple neuroinflammatory mediators, thereby directly linking COX-2 with WNV disease pathogenesis. The ability of COX-2 inhibitors to modulate WNV-induced COX-2 and PGE2 signalling warrants further investigation in an animal model as a potential approach for clinical management of neuroinflammation associated with WNVE

    Increased Levels of Leukocyte-Derived MMP-9 in Patients with Stable Angina Pectoris

    Get PDF
    Objective: There is a growing interest for matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs) in plasma as novel biomarkers in coronary artery disease (CAD). We aimed to identify the sources of MMP-8, MMP-9, TIMP-1 and TIMP-2 among peripheral blood cells and further explore whether gene expression or protein release was altered in patients with stable angina pectoris (SA). Methods: In total, plasma MMP-9 was measured in 44 SA patients and 47 healthy controls. From 10 patients and 10 controls, peripheral blood mononuclear cells (PBMC) and neutrophils were isolated and stimulated ex vivo. MMPs, TIMPs and myeloperoxidase were measured in plasma and supernatants by ELISA. The corresponding gene expression was measured by real-time PCR. Results: Neutrophils were the dominant source of MMP-8 and MMP-9. Upon moderate stimulation with IL-8, the neutrophil release of MMP-9 was higher in the SA patients compared with controls (p,0.05). In PBMC, the TIMP-1 and MMP-9 mRNA expression was higher in SA patients compared with controls, p,0.01 and 0.05, respectively. There were no differences in plasma levels between patients and controls except for TIMP-2, which was lower in patients, p,0.01. Conclusion: Measurements of MMPs and TIMPs in plasma may be of limited use. Despite similar plasma levels in SA patients and controls, the leukocyte-derived MMP-9 and TIMP-1 are significantly altered in patients. The findings indicate that th

    Genetic Variants in TGF-β Pathway Are Associated with Ovarian Cancer Risk

    Get PDF
    The transforming growth factor-β (TGF-β) signaling pathway is involved in a diverse array of cellular processes responsible for tumorigenesis. In this case-control study, we applied a pathway-based approach to evaluate single-nucleotide polymorphisms (SNPs) in the TGF-β signaling pathway as predictors of ovarian cancer risk. We systematically genotyped 218 SNPs from 21 genes in the TGF-β signaling pathway in 417 ovarian cancer cases and 417 matched control subjects. We analyzed the associations of these SNPs with ovarian cancer risk, performed haplotype analysis and identified potential cumulative effects of genetic variants. We also performed analysis to identify higher-order gene-gene interactions influencing ovarian cancer risk. Individual SNP analysis showed that the most significant SNP was SMAD6: rs4147407, with an adjusted odds ratio (OR) of 1.60 (95% confidence interval [CI], 1.14–2.24, P = 0.0066). Cumulative genotype analysis of 13 SNPs with significant main effects exhibited a clear dose-response trend of escalating risk with increasing number of unfavorable genotypes. In gene-based analysis, SMAD6 was identified as the most significant gene associated with ovarian cancer risk. Haplotype analysis further revealed that two haplotype blocks within SMAD6 were significantly associated with decreased ovarian cancer risk, as compared to the most common haplotype. Gene-gene interaction analysis further categorized the study population into subgroups with different ovarian cancer risk. Our findings suggest that genetic variants in the TGF-β signaling pathway are associated with ovarian cancer risk and may facilitate the identification of high-risk subgroups in the general population

    Intrapericardial Delivery of Gelfoam Enables the Targeted Delivery of Periostin Peptide after Myocardial Infarction by Inducing Fibrin Clot Formation

    Get PDF
    Background: Administration of a recombinant peptide of Periostin (rPN) has recently been shown to stimulate cardiomyocyte proliferation and angiogensis after myocardial infarction (MI). However, strategies for targeting the delivery of rPN to the heart are lacking. Intrapericardial administration of drug-eluting hydrogels may provide a clinically viable strategy for increasing myocardial retention, therapeutic efficacy, and bioactivity of rPN and to decrease systemic re-circulation. Methods and Results: We investigated the ability of intrapericardial injections of drug-eluting hydrogels to deliver and prolong the release of rPN to the myocardium in a large animal model of myocardial infarction. Gelfoam is an FDA-approved hemostatic material commonly used in surgery, and is known to stimulate fibrin clot formation. We show that Gelfoam disks loaded with rPN, when implanted within the pericardium or peritoneum of mammals becomes encapsulated within a non-fibrotic fibrin-rich hydrogel, prolonging the in vitro and in vivo release of rPN. Administration into the pericardial cavity of pigs, following a complete occlusion of the left anterior descending artery, leads to greater induction of cardiomyocyte mitosis, increased cardiomyocyte cell cycle activity, and enhanced angiogenesis compared to direct injection of rPN alone. Conclusions: The results of this study suggest that intrapericardial drug delivery of Gelfoam, enhanced by triggered clot formation, can be used to effectively deliver rPN to the myocardium in a clinically relevant model of myocardial infarction. The work presented here should enhance the translational potential of pharmaceutical-based strategies that must be targeted to the myocardium

    Functional Characterization of CLPTM1L as a Lung Cancer Risk Candidate Gene in the 5p15.33 Locus

    Get PDF
    Cleft Lip and Palate Transmembrane Protein 1-Like (CLPTM1L), resides in a region of chromosome 5 for which copy number gain has been found to be the most frequent genetic event in the early stages of non-small cell lung cancer (NSCLC). This locus has been found by multiple genome wide association studies to be associated with lung cancer in both smokers and non-smokers. CLPTM1L has been identified as an overexpressed protein in human ovarian tumor cell lines that are resistant to cisplatin, which is the only insight thus far into the function of CLPTM1L. Here we find CLPTM1L expression to be increased in lung adenocarcinomas compared to matched normal lung tissues and in lung tumor cell lines by mechanisms not exclusive to copy number gain. Upon loss of CLPTM1L accumulation in lung tumor cells, cisplatin and camptothecin induced apoptosis were increased in direct proportion to the level of CLPTM1L knockdown. Bcl-xL accumulation was significantly decreased upon loss of CLPTM1L. Expression of exogenous Bcl-xL abolished sensitization to apoptotic killing with CLPTM1L knockdown. These results demonstrate that CLPTM1L, an overexpressed protein in lung tumor cells, protects from genotoxic stress induced apoptosis through regulation of Bcl-xL. Thus, this study implicates anti-apoptotic CLPTM1L function as a potential mechanism of susceptibility to lung tumorigenesis and resistance to chemotherapy

    ABCA transporter gene expression and poor outcome in epithelial ovarian cancer

    Full text link
    Background ATP-binding cassette (ABC) transporters play various roles in cancer biology and drug resistance, but their association with outcomes in serous epithelial ovarian cancer (EOC) is unknown. Methods The relationship between clinical outcomes and ABC transporter gene expression in two independent cohorts of high-grade serous EOC tumors was assessed with real-time quantitative polymerase chain reaction, analysis of expression microarray data, and immunohistochemistry. Associations between clinical outcomes and ABCA transporter gene single nucleotide polymorphisms were tested in a genome-wide association study. Impact of short interfering RNA-mediated gene suppression was determined by colony forming and migration assays. Association with survival was assessed with Kaplan-Meier analysis and log-rank tests. All statistical tests were two-sided. Results Associations with outcome were observed with ABC transporters of the A subfamily, but not with multidrug transporters. High-level expression of ABCA1, ABCA6, ABCA8, and ABCA9 in primary tumors was statistically significantly associated with reduced survival in serous ovarian cancer patients. Low levels of ABCA5 and the C-allele of rs536009 were associated with shorter overall survival (hazard ratio for death = 1.50; 95% confidence interval [CI] =1.26 to 1.79; P = 6.5e-6). The combined expression pattern of ABCA1, ABCA5, and either ABCA8 or ABCA9 was associated with particularly poor outcome (mean overall survival in group with adverse ABCA1, ABCA5 and ABCA9 gene expression = 33.2 months, 95% CI = 26.4 to 40.1; vs 55.3 months in the group with favorable ABCA gene expression, 95% CI = 49.8 to 60.8; P =. 001), independently of tumor stage or surgical debulking status. Suppression of cholesterol transporter ABCA1 inhibited ovarian cancer cell growth and migration in vitro, and statin treatment reduced ovarian cancer cell migration. Conclusions Expression of ABCA transporters was associated with poor outcome in serous ovarian cancer, implicating lipid trafficking as a potentially important process in EOC. © 2014 The Author 2014. Published by Oxford University Press. All rights reserved

    Evaluation of Candidate Stromal Epithelial Cross-Talk Genes Identifies Association between Risk of Serous Ovarian Cancer and TERT, a Cancer Susceptibility “Hot-Spot”

    Get PDF
    We hypothesized that variants in genes expressed as a consequence of interactions between ovarian cancer cells and the host micro-environment could contribute to cancer susceptibility. We therefore used a two-stage approach to evaluate common single nucleotide polymorphisms (SNPs) in 173 genes involved in stromal epithelial interactions in the Ovarian Cancer Association Consortium (OCAC). In the discovery stage, cases with epithelial ovarian cancer (n = 675) and controls (n = 1,162) were genotyped at 1,536 SNPs using an Illumina GoldenGate assay. Based on Positive Predictive Value estimates, three SNPs—PODXL rs1013368, ITGA6 rs13027811, and MMP3 rs522616—were selected for replication using TaqMan genotyping in up to 3,059 serous invasive cases and 8,905 controls from 16 OCAC case-control studies. An additional 18 SNPs with Pper-allele<0.05 in the discovery stage were selected for replication in a subset of five OCAC studies (n = 1,233 serous invasive cases; n = 3,364 controls). The discovery stage associations in PODXL, ITGA6, and MMP3 were attenuated in the larger replication set (adj. Pper-allele≥0.5). However genotypes at TERT rs7726159 were associated with ovarian cancer risk in the smaller, five-study replication study (Pper-allele = 0.03). Combined analysis of the discovery and replication sets for this TERT SNP showed an increased risk of serous ovarian cancer among non-Hispanic whites [adj. ORper-allele 1.14 (1.04–1.24) p = 0.003]. Our study adds to the growing evidence that, like the 8q24 locus, the telomerase reverse transcriptase locus at 5p15.33, is a general cancer susceptibility locus

    <i>ABCB1</i> (MDR1) induction defines a common resistance mechanism in paclitaxel- and olaparib-resistant ovarian cancer cells

    Get PDF
    BACKGROUND: Clinical response to chemotherapy for ovarian cancer is frequently compromised by the development of drug-resistant disease. The underlying molecular mechanisms and implications for prescription of routinely prescribed chemotherapy drugs are poorly understood. METHODS: We created novel A2780-derived ovarian cancer cell lines resistant to paclitaxel and olaparib following continuous incremental drug selection. MTT assays were used to assess chemosensitivity to paclitaxel and olaparib in drug-sensitive and drug-resistant cells±the ABCB1 inhibitors verapamil and elacridar and cross-resistance to cisplatin, carboplatin, doxorubicin, rucaparib, veliparib and AZD2461. ABCB1 expression was assessed by qRT-PCR, copy number, western blotting and immunohistochemical analysis and ABCB1 activity assessed by the Vybrant and P-glycoprotein-Glo assays. RESULTS: Paclitaxel-resistant cells were cross-resistant to olaparib, doxorubicin and rucaparib but not to veliparib or AZD2461. Resistance correlated with increased ABCB1 expression and was reversible following treatment with the ABCB1 inhibitors verapamil and elacridar. Active efflux of paclitaxel, olaparib, doxorubicin and rucaparib was confirmed in drug-resistant cells and in ABCB1-expressing bacterial membranes. CONCLUSIONS: We describe a common ABCB1-mediated mechanism of paclitaxel and olaparib resistance in ovarian cancer cells. Optimal choice of PARP inhibitor may therefore limit the progression of drug-resistant disease, while routine prescription of first-line paclitaxel may significantly limit subsequent chemotherapy options in ovarian cancer patients

    Assessment of Multifactor Gene-Environment Interactions and Ovarian Cancer Risk: Candidate Genes, Obesity and Hormone-Related Risk Factors

    Get PDF
    BACKGROUND: Many epithelial ovarian cancer (EOC) risk factors relate to hormone exposure and elevated estrogen levels are associated with obesity in postmenopausal women. Therefore, we hypothesized that gene-environment interactions related to hormone-related risk factors could differ between obese and non-obese women. METHODS: We considered interactions between 11,441 SNPs within 80 candidate genes related to hormone biosynthesis and metabolism and insulin-like growth factors with six hormone-related factors (oral contraceptive use, parity, endometriosis, tubal ligation, hormone replacement therapy, and estrogen use) and assessed whether these interactions differed between obese and non-obese women. Interactions were assessed using logistic regression models and data from 14 case-control studies (6,247 cases; 10,379 controls). Histotype-specific analyses were also completed. RESULTS: SNPs in the following candidate genes showed notable interaction: IGF1R (rs41497346, estrogen plus progesterone hormone therapy, histology = all, P = 4.9 × 10(-6)) and ESR1 (rs12661437, endometriosis, histology = all, P = 1.5 × 10(-5)). The most notable obesity-gene-hormone risk factor interaction was within INSR (rs113759408, parity, histology = endometrioid, P = 8.8 × 10(-6)). CONCLUSIONS: We have demonstrated the feasibility of assessing multifactor interactions in large genetic epidemiology studies. Follow-up studies are necessary to assess the robustness of our findings for ESR1, CYP11A1, IGF1R, CYP11B1, INSR, and IGFBP2 Future work is needed to develop powerful statistical methods able to detect these complex interactions. IMPACT: Assessment of multifactor interaction is feasible, and, here, suggests that the relationship between genetic variants within candidate genes and hormone-related risk factors may vary EOC susceptibility
    corecore